MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothprim Structured version   Visualization version   GIF version

Theorem grothprim 9535
Description: The Tarski-Grothendieck Axiom ax-groth 9524 expanded into set theory primitives using 163 symbols (allowing the defined symbols , , , and ). An open problem is whether a shorter equivalent exists (when expanded to primitives). (Contributed by NM, 16-Apr-2007.)
Assertion
Ref Expression
grothprim 𝑦(𝑥𝑦 ∧ ∀𝑧((𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))) ∧ ∃𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦))))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑔

Proof of Theorem grothprim
StepHypRef Expression
1 axgroth4 9533 . 2 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)))
2 3anass 1035 . . . 4 ((𝑥𝑦 ∧ ∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ (𝑥𝑦 ∧ (∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)))))
3 dfss2 3557 . . . . . . . . . . . . 13 (𝑤𝑧 ↔ ∀𝑢(𝑢𝑤𝑢𝑧))
4 elin 3758 . . . . . . . . . . . . 13 (𝑤 ∈ (𝑦𝑣) ↔ (𝑤𝑦𝑤𝑣))
53, 4imbi12i 339 . . . . . . . . . . . 12 ((𝑤𝑧𝑤 ∈ (𝑦𝑣)) ↔ (∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))
65albii 1737 . . . . . . . . . . 11 (∀𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ↔ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))
76rexbii 3023 . . . . . . . . . 10 (∃𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ↔ ∃𝑣𝑦𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))
8 df-rex 2902 . . . . . . . . . 10 (∃𝑣𝑦𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)) ↔ ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣))))
97, 8bitri 263 . . . . . . . . 9 (∃𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ↔ ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣))))
109ralbii 2963 . . . . . . . 8 (∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ↔ ∀𝑧𝑦𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣))))
11 df-ral 2901 . . . . . . . 8 (∀𝑧𝑦𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣))) ↔ ∀𝑧(𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))))
1210, 11bitri 263 . . . . . . 7 (∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ↔ ∀𝑧(𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))))
13 dfss2 3557 . . . . . . . . . . 11 (𝑧𝑦 ↔ ∀𝑤(𝑤𝑧𝑤𝑦))
14 vex 3176 . . . . . . . . . . . . . . 15 𝑦 ∈ V
15 difexg 4735 . . . . . . . . . . . . . . 15 (𝑦 ∈ V → (𝑦𝑧) ∈ V)
1614, 15ax-mp 5 . . . . . . . . . . . . . 14 (𝑦𝑧) ∈ V
17 vex 3176 . . . . . . . . . . . . . 14 𝑧 ∈ V
18 incom 3767 . . . . . . . . . . . . . . 15 ((𝑦𝑧) ∩ 𝑧) = (𝑧 ∩ (𝑦𝑧))
19 disjdif 3992 . . . . . . . . . . . . . . 15 (𝑧 ∩ (𝑦𝑧)) = ∅
2018, 19eqtri 2632 . . . . . . . . . . . . . 14 ((𝑦𝑧) ∩ 𝑧) = ∅
2116, 17, 20brdom6disj 9235 . . . . . . . . . . . . 13 ((𝑦𝑧) ≼ 𝑧 ↔ ∃𝑤(∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤))
2221orbi1i 541 . . . . . . . . . . . 12 (((𝑦𝑧) ≼ 𝑧𝑧𝑦) ↔ (∃𝑤(∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦))
23 19.44v 1899 . . . . . . . . . . . 12 (∃𝑤((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦) ↔ (∃𝑤(∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦))
2422, 23bitr4i 266 . . . . . . . . . . 11 (((𝑦𝑧) ≼ 𝑧𝑧𝑦) ↔ ∃𝑤((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦))
2513, 24imbi12i 339 . . . . . . . . . 10 ((𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)) ↔ (∀𝑤(𝑤𝑧𝑤𝑦) → ∃𝑤((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦)))
26 19.35 1794 . . . . . . . . . 10 (∃𝑤((𝑤𝑧𝑤𝑦) → ((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦)) ↔ (∀𝑤(𝑤𝑧𝑤𝑦) → ∃𝑤((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦)))
2725, 26bitr4i 266 . . . . . . . . 9 ((𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)) ↔ ∃𝑤((𝑤𝑧𝑤𝑦) → ((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦)))
28 grothprimlem 9534 . . . . . . . . . . . . . . . . . 18 ({𝑣, 𝑢} ∈ 𝑤 ↔ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))))
2928mobii 2481 . . . . . . . . . . . . . . . . 17 (∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ↔ ∃*𝑢𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))))
30 mo2v 2465 . . . . . . . . . . . . . . . . 17 (∃*𝑢𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) ↔ ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡))
3129, 30bitri 263 . . . . . . . . . . . . . . . 16 (∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ↔ ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡))
3231ralbii 2963 . . . . . . . . . . . . . . 15 (∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ↔ ∀𝑣𝑧𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡))
33 df-ral 2901 . . . . . . . . . . . . . . 15 (∀𝑣𝑧𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡) ↔ ∀𝑣(𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)))
3432, 33bitri 263 . . . . . . . . . . . . . 14 (∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ↔ ∀𝑣(𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)))
35 df-ral 2901 . . . . . . . . . . . . . . 15 (∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤 ↔ ∀𝑣(𝑣 ∈ (𝑦𝑧) → ∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤))
36 eldif 3550 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ (𝑦𝑧) ↔ (𝑣𝑦 ∧ ¬ 𝑣𝑧))
37 grothprimlem 9534 . . . . . . . . . . . . . . . . . . . 20 ({𝑢, 𝑣} ∈ 𝑤 ↔ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))
3837rexbii 3023 . . . . . . . . . . . . . . . . . . 19 (∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤 ↔ ∃𝑢𝑧𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))
39 df-rex 2902 . . . . . . . . . . . . . . . . . . 19 (∃𝑢𝑧𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))) ↔ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣)))))
4038, 39bitri 263 . . . . . . . . . . . . . . . . . 18 (∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤 ↔ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣)))))
4136, 40imbi12i 339 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ (𝑦𝑧) → ∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ↔ ((𝑣𝑦 ∧ ¬ 𝑣𝑧) → ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))
42 pm5.6 949 . . . . . . . . . . . . . . . . 17 (((𝑣𝑦 ∧ ¬ 𝑣𝑧) → ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))) ↔ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣)))))))
4341, 42bitri 263 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ (𝑦𝑧) → ∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ↔ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣)))))))
4443albii 1737 . . . . . . . . . . . . . . 15 (∀𝑣(𝑣 ∈ (𝑦𝑧) → ∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ↔ ∀𝑣(𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣)))))))
4535, 44bitri 263 . . . . . . . . . . . . . 14 (∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤 ↔ ∀𝑣(𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣)))))))
4634, 45anbi12i 729 . . . . . . . . . . . . 13 ((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ↔ (∀𝑣(𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ ∀𝑣(𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))))
47 19.26 1786 . . . . . . . . . . . . 13 (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ↔ (∀𝑣(𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ ∀𝑣(𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))))
4846, 47bitr4i 266 . . . . . . . . . . . 12 ((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ↔ ∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))))
4948orbi1i 541 . . . . . . . . . . 11 (((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦) ↔ (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦))
5049imbi2i 325 . . . . . . . . . 10 (((𝑤𝑧𝑤𝑦) → ((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦)) ↔ ((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦)))
5150exbii 1764 . . . . . . . . 9 (∃𝑤((𝑤𝑧𝑤𝑦) → ((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦)) ↔ ∃𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦)))
5227, 51bitri 263 . . . . . . . 8 ((𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)) ↔ ∃𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦)))
5352albii 1737 . . . . . . 7 (∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)) ↔ ∀𝑧𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦)))
5412, 53anbi12i 729 . . . . . 6 ((∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ (∀𝑧(𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))) ∧ ∀𝑧𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦))))
55 19.26 1786 . . . . . 6 (∀𝑧((𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))) ∧ ∃𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦))) ↔ (∀𝑧(𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))) ∧ ∀𝑧𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦))))
5654, 55bitr4i 266 . . . . 5 ((∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ ∀𝑧((𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))) ∧ ∃𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦))))
5756anbi2i 726 . . . 4 ((𝑥𝑦 ∧ (∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)))) ↔ (𝑥𝑦 ∧ ∀𝑧((𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))) ∧ ∃𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦)))))
582, 57bitri 263 . . 3 ((𝑥𝑦 ∧ ∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ (𝑥𝑦 ∧ ∀𝑧((𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))) ∧ ∃𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦)))))
5958exbii 1764 . 2 (∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑧((𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))) ∧ ∃𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦)))))
601, 59mpbi 219 1 𝑦(𝑥𝑦 ∧ ∀𝑧((𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))) ∧ ∃𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031  wal 1473  wex 1695  wcel 1977  ∃*wmo 2459  wral 2896  wrex 2897  Vcvv 3173  cdif 3537  cin 3539  wss 3540  c0 3874  {cpr 4127   class class class wbr 4583  cdom 7839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-reg 8380  ax-inf2 8421  ax-cc 9140  ax-ac2 9168  ax-groth 9524
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-card 8648  df-acn 8651  df-ac 8822  df-cda 8873
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator