MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchpwdom Structured version   Visualization version   GIF version

Theorem gchpwdom 9371
Description: A relationship between dominance over the powerset and strict dominance when the sets involved are infinite GCH-sets. Proposition 3.1 of [KanamoriPincus] p. 421. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchpwdom ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) → (𝐴𝐵 ↔ 𝒫 𝐴𝐵))

Proof of Theorem gchpwdom
StepHypRef Expression
1 simpl2 1058 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐴 ∈ GCH)
2 pwexg 4776 . . . . . . 7 (𝐴 ∈ GCH → 𝒫 𝐴 ∈ V)
31, 2syl 17 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 𝐴 ∈ V)
4 simpl3 1059 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐵 ∈ GCH)
5 cdadom3 8893 . . . . . 6 ((𝒫 𝐴 ∈ V ∧ 𝐵 ∈ GCH) → 𝒫 𝐴 ≼ (𝒫 𝐴 +𝑐 𝐵))
63, 4, 5syl2anc 691 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 𝐴 ≼ (𝒫 𝐴 +𝑐 𝐵))
7 domen2 7988 . . . . 5 (𝐵 ≈ (𝒫 𝐴 +𝑐 𝐵) → (𝒫 𝐴𝐵 ↔ 𝒫 𝐴 ≼ (𝒫 𝐴 +𝑐 𝐵)))
86, 7syl5ibrcom 236 . . . 4 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 ≈ (𝒫 𝐴 +𝑐 𝐵) → 𝒫 𝐴𝐵))
9 cdacomen 8886 . . . . . . 7 (𝐵 +𝑐 𝒫 𝐴) ≈ (𝒫 𝐴 +𝑐 𝐵)
10 entr 7894 . . . . . . 7 (((𝐵 +𝑐 𝒫 𝐴) ≈ (𝒫 𝐴 +𝑐 𝐵) ∧ (𝒫 𝐴 +𝑐 𝐵) ≈ 𝒫 𝐵) → (𝐵 +𝑐 𝒫 𝐴) ≈ 𝒫 𝐵)
119, 10mpan 702 . . . . . 6 ((𝒫 𝐴 +𝑐 𝐵) ≈ 𝒫 𝐵 → (𝐵 +𝑐 𝒫 𝐴) ≈ 𝒫 𝐵)
12 ensym 7891 . . . . . 6 ((𝐵 +𝑐 𝒫 𝐴) ≈ 𝒫 𝐵 → 𝒫 𝐵 ≈ (𝐵 +𝑐 𝒫 𝐴))
13 endom 7868 . . . . . 6 (𝒫 𝐵 ≈ (𝐵 +𝑐 𝒫 𝐴) → 𝒫 𝐵 ≼ (𝐵 +𝑐 𝒫 𝐴))
1411, 12, 133syl 18 . . . . 5 ((𝒫 𝐴 +𝑐 𝐵) ≈ 𝒫 𝐵 → 𝒫 𝐵 ≼ (𝐵 +𝑐 𝒫 𝐴))
15 domsdomtr 7980 . . . . . . . . . . 11 ((ω ≼ 𝐴𝐴𝐵) → ω ≺ 𝐵)
16153ad2antl1 1216 . . . . . . . . . 10 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ω ≺ 𝐵)
17 sdomnsym 7970 . . . . . . . . . 10 (ω ≺ 𝐵 → ¬ 𝐵 ≺ ω)
1816, 17syl 17 . . . . . . . . 9 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ¬ 𝐵 ≺ ω)
19 isfinite 8432 . . . . . . . . 9 (𝐵 ∈ Fin ↔ 𝐵 ≺ ω)
2018, 19sylnibr 318 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ¬ 𝐵 ∈ Fin)
21 gchcdaidm 9369 . . . . . . . 8 ((𝐵 ∈ GCH ∧ ¬ 𝐵 ∈ Fin) → (𝐵 +𝑐 𝐵) ≈ 𝐵)
224, 20, 21syl2anc 691 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 +𝑐 𝐵) ≈ 𝐵)
23 pwen 8018 . . . . . . 7 ((𝐵 +𝑐 𝐵) ≈ 𝐵 → 𝒫 (𝐵 +𝑐 𝐵) ≈ 𝒫 𝐵)
24 domen1 7987 . . . . . . 7 (𝒫 (𝐵 +𝑐 𝐵) ≈ 𝒫 𝐵 → (𝒫 (𝐵 +𝑐 𝐵) ≼ (𝐵 +𝑐 𝒫 𝐴) ↔ 𝒫 𝐵 ≼ (𝐵 +𝑐 𝒫 𝐴)))
2522, 23, 243syl 18 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 (𝐵 +𝑐 𝐵) ≼ (𝐵 +𝑐 𝒫 𝐴) ↔ 𝒫 𝐵 ≼ (𝐵 +𝑐 𝒫 𝐴)))
26 pwcdadom 8921 . . . . . . 7 (𝒫 (𝐵 +𝑐 𝐵) ≼ (𝐵 +𝑐 𝒫 𝐴) → 𝒫 𝐵 ≼ 𝒫 𝐴)
27 canth2g 7999 . . . . . . . . 9 (𝐵 ∈ GCH → 𝐵 ≺ 𝒫 𝐵)
28 sdomdomtr 7978 . . . . . . . . . 10 ((𝐵 ≺ 𝒫 𝐵 ∧ 𝒫 𝐵 ≼ 𝒫 𝐴) → 𝐵 ≺ 𝒫 𝐴)
2928ex 449 . . . . . . . . 9 (𝐵 ≺ 𝒫 𝐵 → (𝒫 𝐵 ≼ 𝒫 𝐴𝐵 ≺ 𝒫 𝐴))
304, 27, 293syl 18 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 ≼ 𝒫 𝐴𝐵 ≺ 𝒫 𝐴))
31 gchi 9325 . . . . . . . . . 10 ((𝐴 ∈ GCH ∧ 𝐴𝐵𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin)
32313expia 1259 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ 𝐴𝐵) → (𝐵 ≺ 𝒫 𝐴𝐴 ∈ Fin))
33323ad2antl2 1217 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 ≺ 𝒫 𝐴𝐴 ∈ Fin))
34 isfinite 8432 . . . . . . . . 9 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
35 simpl1 1057 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ω ≼ 𝐴)
36 domnsym 7971 . . . . . . . . . . 11 (ω ≼ 𝐴 → ¬ 𝐴 ≺ ω)
3735, 36syl 17 . . . . . . . . . 10 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ¬ 𝐴 ≺ ω)
3837pm2.21d 117 . . . . . . . . 9 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐴 ≺ ω → 𝒫 𝐴𝐵))
3934, 38syl5bi 231 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐴 ∈ Fin → 𝒫 𝐴𝐵))
4030, 33, 393syld 58 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 ≼ 𝒫 𝐴 → 𝒫 𝐴𝐵))
4126, 40syl5 33 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 (𝐵 +𝑐 𝐵) ≼ (𝐵 +𝑐 𝒫 𝐴) → 𝒫 𝐴𝐵))
4225, 41sylbird 249 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 ≼ (𝐵 +𝑐 𝒫 𝐴) → 𝒫 𝐴𝐵))
4314, 42syl5 33 . . . 4 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ((𝒫 𝐴 +𝑐 𝐵) ≈ 𝒫 𝐵 → 𝒫 𝐴𝐵))
44 cdadom3 8893 . . . . . . 7 ((𝐵 ∈ GCH ∧ 𝒫 𝐴 ∈ V) → 𝐵 ≼ (𝐵 +𝑐 𝒫 𝐴))
454, 3, 44syl2anc 691 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐵 ≼ (𝐵 +𝑐 𝒫 𝐴))
46 domentr 7901 . . . . . 6 ((𝐵 ≼ (𝐵 +𝑐 𝒫 𝐴) ∧ (𝐵 +𝑐 𝒫 𝐴) ≈ (𝒫 𝐴 +𝑐 𝐵)) → 𝐵 ≼ (𝒫 𝐴 +𝑐 𝐵))
4745, 9, 46sylancl 693 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐵 ≼ (𝒫 𝐴 +𝑐 𝐵))
48 sdomdom 7869 . . . . . . . . 9 (𝐴𝐵𝐴𝐵)
4948adantl 481 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐴𝐵)
50 pwdom 7997 . . . . . . . 8 (𝐴𝐵 → 𝒫 𝐴 ≼ 𝒫 𝐵)
51 cdadom1 8891 . . . . . . . 8 (𝒫 𝐴 ≼ 𝒫 𝐵 → (𝒫 𝐴 +𝑐 𝐵) ≼ (𝒫 𝐵 +𝑐 𝐵))
5249, 50, 513syl 18 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐴 +𝑐 𝐵) ≼ (𝒫 𝐵 +𝑐 𝐵))
534, 27syl 17 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐵 ≺ 𝒫 𝐵)
54 sdomdom 7869 . . . . . . . 8 (𝐵 ≺ 𝒫 𝐵𝐵 ≼ 𝒫 𝐵)
55 cdadom2 8892 . . . . . . . 8 (𝐵 ≼ 𝒫 𝐵 → (𝒫 𝐵 +𝑐 𝐵) ≼ (𝒫 𝐵 +𝑐 𝒫 𝐵))
5653, 54, 553syl 18 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 +𝑐 𝐵) ≼ (𝒫 𝐵 +𝑐 𝒫 𝐵))
57 domtr 7895 . . . . . . 7 (((𝒫 𝐴 +𝑐 𝐵) ≼ (𝒫 𝐵 +𝑐 𝐵) ∧ (𝒫 𝐵 +𝑐 𝐵) ≼ (𝒫 𝐵 +𝑐 𝒫 𝐵)) → (𝒫 𝐴 +𝑐 𝐵) ≼ (𝒫 𝐵 +𝑐 𝒫 𝐵))
5852, 56, 57syl2anc 691 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐴 +𝑐 𝐵) ≼ (𝒫 𝐵 +𝑐 𝒫 𝐵))
59 pwcda1 8899 . . . . . . . 8 (𝐵 ∈ GCH → (𝒫 𝐵 +𝑐 𝒫 𝐵) ≈ 𝒫 (𝐵 +𝑐 1𝑜))
604, 59syl 17 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 +𝑐 𝒫 𝐵) ≈ 𝒫 (𝐵 +𝑐 1𝑜))
61 gchcda1 9357 . . . . . . . . 9 ((𝐵 ∈ GCH ∧ ¬ 𝐵 ∈ Fin) → (𝐵 +𝑐 1𝑜) ≈ 𝐵)
624, 20, 61syl2anc 691 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 +𝑐 1𝑜) ≈ 𝐵)
63 pwen 8018 . . . . . . . 8 ((𝐵 +𝑐 1𝑜) ≈ 𝐵 → 𝒫 (𝐵 +𝑐 1𝑜) ≈ 𝒫 𝐵)
6462, 63syl 17 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 (𝐵 +𝑐 1𝑜) ≈ 𝒫 𝐵)
65 entr 7894 . . . . . . 7 (((𝒫 𝐵 +𝑐 𝒫 𝐵) ≈ 𝒫 (𝐵 +𝑐 1𝑜) ∧ 𝒫 (𝐵 +𝑐 1𝑜) ≈ 𝒫 𝐵) → (𝒫 𝐵 +𝑐 𝒫 𝐵) ≈ 𝒫 𝐵)
6660, 64, 65syl2anc 691 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 +𝑐 𝒫 𝐵) ≈ 𝒫 𝐵)
67 domentr 7901 . . . . . 6 (((𝒫 𝐴 +𝑐 𝐵) ≼ (𝒫 𝐵 +𝑐 𝒫 𝐵) ∧ (𝒫 𝐵 +𝑐 𝒫 𝐵) ≈ 𝒫 𝐵) → (𝒫 𝐴 +𝑐 𝐵) ≼ 𝒫 𝐵)
6858, 66, 67syl2anc 691 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐴 +𝑐 𝐵) ≼ 𝒫 𝐵)
69 gchor 9328 . . . . 5 (((𝐵 ∈ GCH ∧ ¬ 𝐵 ∈ Fin) ∧ (𝐵 ≼ (𝒫 𝐴 +𝑐 𝐵) ∧ (𝒫 𝐴 +𝑐 𝐵) ≼ 𝒫 𝐵)) → (𝐵 ≈ (𝒫 𝐴 +𝑐 𝐵) ∨ (𝒫 𝐴 +𝑐 𝐵) ≈ 𝒫 𝐵))
704, 20, 47, 68, 69syl22anc 1319 . . . 4 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 ≈ (𝒫 𝐴 +𝑐 𝐵) ∨ (𝒫 𝐴 +𝑐 𝐵) ≈ 𝒫 𝐵))
718, 43, 70mpjaod 395 . . 3 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 𝐴𝐵)
7271ex 449 . 2 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) → (𝐴𝐵 → 𝒫 𝐴𝐵))
73 reldom 7847 . . . . 5 Rel ≼
7473brrelexi 5082 . . . 4 (𝒫 𝐴𝐵 → 𝒫 𝐴 ∈ V)
75 pwexb 6867 . . . . 5 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
76 canth2g 7999 . . . . 5 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
7775, 76sylbir 224 . . . 4 (𝒫 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
7874, 77syl 17 . . 3 (𝒫 𝐴𝐵𝐴 ≺ 𝒫 𝐴)
79 sdomdomtr 7978 . . 3 ((𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴𝐵) → 𝐴𝐵)
8078, 79mpancom 700 . 2 (𝒫 𝐴𝐵𝐴𝐵)
8172, 80impbid1 214 1 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) → (𝐴𝐵 ↔ 𝒫 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031  wcel 1977  Vcvv 3173  𝒫 cpw 4108   class class class wbr 4583  (class class class)co 6549  ωcom 6957  1𝑜c1o 7440  cen 7838  cdom 7839  csdm 7840  Fincfn 7841   +𝑐 ccda 8872  GCHcgch 9321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-seqom 7430  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-oexp 7453  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-har 8346  df-wdom 8347  df-cnf 8442  df-card 8648  df-cda 8873  df-fin4 8992  df-gch 9322
This theorem is referenced by:  gchaleph2  9373  gchina  9400
  Copyright terms: Public domain W3C validator