MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdgsum Structured version   Visualization version   GIF version

Theorem frmdgsum 17222
Description: Any word in a free monoid can be expressed as the sum of the singletons composing it. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
frmdmnd.m 𝑀 = (freeMnd‘𝐼)
frmdgsum.u 𝑈 = (varFMnd𝐼)
Assertion
Ref Expression
frmdgsum ((𝐼𝑉𝑊 ∈ Word 𝐼) → (𝑀 Σg (𝑈𝑊)) = 𝑊)

Proof of Theorem frmdgsum
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coeq2 5202 . . . . . . 7 (𝑥 = ∅ → (𝑈𝑥) = (𝑈 ∘ ∅))
2 co02 5566 . . . . . . 7 (𝑈 ∘ ∅) = ∅
31, 2syl6eq 2660 . . . . . 6 (𝑥 = ∅ → (𝑈𝑥) = ∅)
43oveq2d 6565 . . . . 5 (𝑥 = ∅ → (𝑀 Σg (𝑈𝑥)) = (𝑀 Σg ∅))
5 id 22 . . . . 5 (𝑥 = ∅ → 𝑥 = ∅)
64, 5eqeq12d 2625 . . . 4 (𝑥 = ∅ → ((𝑀 Σg (𝑈𝑥)) = 𝑥 ↔ (𝑀 Σg ∅) = ∅))
76imbi2d 329 . . 3 (𝑥 = ∅ → ((𝐼𝑉 → (𝑀 Σg (𝑈𝑥)) = 𝑥) ↔ (𝐼𝑉 → (𝑀 Σg ∅) = ∅)))
8 coeq2 5202 . . . . . 6 (𝑥 = 𝑦 → (𝑈𝑥) = (𝑈𝑦))
98oveq2d 6565 . . . . 5 (𝑥 = 𝑦 → (𝑀 Σg (𝑈𝑥)) = (𝑀 Σg (𝑈𝑦)))
10 id 22 . . . . 5 (𝑥 = 𝑦𝑥 = 𝑦)
119, 10eqeq12d 2625 . . . 4 (𝑥 = 𝑦 → ((𝑀 Σg (𝑈𝑥)) = 𝑥 ↔ (𝑀 Σg (𝑈𝑦)) = 𝑦))
1211imbi2d 329 . . 3 (𝑥 = 𝑦 → ((𝐼𝑉 → (𝑀 Σg (𝑈𝑥)) = 𝑥) ↔ (𝐼𝑉 → (𝑀 Σg (𝑈𝑦)) = 𝑦)))
13 coeq2 5202 . . . . . 6 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝑈𝑥) = (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩)))
1413oveq2d 6565 . . . . 5 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝑀 Σg (𝑈𝑥)) = (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))))
15 id 22 . . . . 5 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → 𝑥 = (𝑦 ++ ⟨“𝑧”⟩))
1614, 15eqeq12d 2625 . . . 4 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝑀 Σg (𝑈𝑥)) = 𝑥 ↔ (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = (𝑦 ++ ⟨“𝑧”⟩)))
1716imbi2d 329 . . 3 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝐼𝑉 → (𝑀 Σg (𝑈𝑥)) = 𝑥) ↔ (𝐼𝑉 → (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = (𝑦 ++ ⟨“𝑧”⟩))))
18 coeq2 5202 . . . . . 6 (𝑥 = 𝑊 → (𝑈𝑥) = (𝑈𝑊))
1918oveq2d 6565 . . . . 5 (𝑥 = 𝑊 → (𝑀 Σg (𝑈𝑥)) = (𝑀 Σg (𝑈𝑊)))
20 id 22 . . . . 5 (𝑥 = 𝑊𝑥 = 𝑊)
2119, 20eqeq12d 2625 . . . 4 (𝑥 = 𝑊 → ((𝑀 Σg (𝑈𝑥)) = 𝑥 ↔ (𝑀 Σg (𝑈𝑊)) = 𝑊))
2221imbi2d 329 . . 3 (𝑥 = 𝑊 → ((𝐼𝑉 → (𝑀 Σg (𝑈𝑥)) = 𝑥) ↔ (𝐼𝑉 → (𝑀 Σg (𝑈𝑊)) = 𝑊)))
23 frmdmnd.m . . . . . 6 𝑀 = (freeMnd‘𝐼)
2423frmd0 17220 . . . . 5 ∅ = (0g𝑀)
2524gsum0 17101 . . . 4 (𝑀 Σg ∅) = ∅
2625a1i 11 . . 3 (𝐼𝑉 → (𝑀 Σg ∅) = ∅)
27 oveq1 6556 . . . . . 6 ((𝑀 Σg (𝑈𝑦)) = 𝑦 → ((𝑀 Σg (𝑈𝑦)) ++ ⟨“𝑧”⟩) = (𝑦 ++ ⟨“𝑧”⟩))
28 simprl 790 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → 𝑦 ∈ Word 𝐼)
29 simprr 792 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → 𝑧𝐼)
3029s1cld 13236 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ⟨“𝑧”⟩ ∈ Word 𝐼)
31 frmdgsum.u . . . . . . . . . . . . 13 𝑈 = (varFMnd𝐼)
3231vrmdf 17218 . . . . . . . . . . . 12 (𝐼𝑉𝑈:𝐼⟶Word 𝐼)
3332adantr 480 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → 𝑈:𝐼⟶Word 𝐼)
34 ccatco 13432 . . . . . . . . . . 11 ((𝑦 ∈ Word 𝐼 ∧ ⟨“𝑧”⟩ ∈ Word 𝐼𝑈:𝐼⟶Word 𝐼) → (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩)) = ((𝑈𝑦) ++ (𝑈 ∘ ⟨“𝑧”⟩)))
3528, 30, 33, 34syl3anc 1318 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩)) = ((𝑈𝑦) ++ (𝑈 ∘ ⟨“𝑧”⟩)))
36 s1co 13430 . . . . . . . . . . . . 13 ((𝑧𝐼𝑈:𝐼⟶Word 𝐼) → (𝑈 ∘ ⟨“𝑧”⟩) = ⟨“(𝑈𝑧)”⟩)
3729, 33, 36syl2anc 691 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑈 ∘ ⟨“𝑧”⟩) = ⟨“(𝑈𝑧)”⟩)
3831vrmdval 17217 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑧𝐼) → (𝑈𝑧) = ⟨“𝑧”⟩)
3938adantrl 748 . . . . . . . . . . . . 13 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑈𝑧) = ⟨“𝑧”⟩)
4039s1eqd 13234 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ⟨“(𝑈𝑧)”⟩ = ⟨“⟨“𝑧”⟩”⟩)
4137, 40eqtrd 2644 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑈 ∘ ⟨“𝑧”⟩) = ⟨“⟨“𝑧”⟩”⟩)
4241oveq2d 6565 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ((𝑈𝑦) ++ (𝑈 ∘ ⟨“𝑧”⟩)) = ((𝑈𝑦) ++ ⟨“⟨“𝑧”⟩”⟩))
4335, 42eqtrd 2644 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩)) = ((𝑈𝑦) ++ ⟨“⟨“𝑧”⟩”⟩))
4443oveq2d 6565 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = (𝑀 Σg ((𝑈𝑦) ++ ⟨“⟨“𝑧”⟩”⟩)))
4523frmdmnd 17219 . . . . . . . . . . 11 (𝐼𝑉𝑀 ∈ Mnd)
4645adantr 480 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → 𝑀 ∈ Mnd)
47 wrdco 13428 . . . . . . . . . . . 12 ((𝑦 ∈ Word 𝐼𝑈:𝐼⟶Word 𝐼) → (𝑈𝑦) ∈ Word Word 𝐼)
4828, 33, 47syl2anc 691 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑈𝑦) ∈ Word Word 𝐼)
49 eqid 2610 . . . . . . . . . . . . . 14 (Base‘𝑀) = (Base‘𝑀)
5023, 49frmdbas 17212 . . . . . . . . . . . . 13 (𝐼𝑉 → (Base‘𝑀) = Word 𝐼)
5150adantr 480 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (Base‘𝑀) = Word 𝐼)
52 wrdeq 13182 . . . . . . . . . . . 12 ((Base‘𝑀) = Word 𝐼 → Word (Base‘𝑀) = Word Word 𝐼)
5351, 52syl 17 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → Word (Base‘𝑀) = Word Word 𝐼)
5448, 53eleqtrrd 2691 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑈𝑦) ∈ Word (Base‘𝑀))
5530, 51eleqtrrd 2691 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ⟨“𝑧”⟩ ∈ (Base‘𝑀))
5655s1cld 13236 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ⟨“⟨“𝑧”⟩”⟩ ∈ Word (Base‘𝑀))
57 eqid 2610 . . . . . . . . . . 11 (+g𝑀) = (+g𝑀)
5849, 57gsumccat 17201 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ (𝑈𝑦) ∈ Word (Base‘𝑀) ∧ ⟨“⟨“𝑧”⟩”⟩ ∈ Word (Base‘𝑀)) → (𝑀 Σg ((𝑈𝑦) ++ ⟨“⟨“𝑧”⟩”⟩)) = ((𝑀 Σg (𝑈𝑦))(+g𝑀)(𝑀 Σg ⟨“⟨“𝑧”⟩”⟩)))
5946, 54, 56, 58syl3anc 1318 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑀 Σg ((𝑈𝑦) ++ ⟨“⟨“𝑧”⟩”⟩)) = ((𝑀 Σg (𝑈𝑦))(+g𝑀)(𝑀 Σg ⟨“⟨“𝑧”⟩”⟩)))
6049gsumws1 17199 . . . . . . . . . . . 12 (⟨“𝑧”⟩ ∈ (Base‘𝑀) → (𝑀 Σg ⟨“⟨“𝑧”⟩”⟩) = ⟨“𝑧”⟩)
6155, 60syl 17 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑀 Σg ⟨“⟨“𝑧”⟩”⟩) = ⟨“𝑧”⟩)
6261oveq2d 6565 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ((𝑀 Σg (𝑈𝑦))(+g𝑀)(𝑀 Σg ⟨“⟨“𝑧”⟩”⟩)) = ((𝑀 Σg (𝑈𝑦))(+g𝑀)⟨“𝑧”⟩))
6349gsumwcl 17200 . . . . . . . . . . . 12 ((𝑀 ∈ Mnd ∧ (𝑈𝑦) ∈ Word (Base‘𝑀)) → (𝑀 Σg (𝑈𝑦)) ∈ (Base‘𝑀))
6446, 54, 63syl2anc 691 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑀 Σg (𝑈𝑦)) ∈ (Base‘𝑀))
6523, 49, 57frmdadd 17215 . . . . . . . . . . 11 (((𝑀 Σg (𝑈𝑦)) ∈ (Base‘𝑀) ∧ ⟨“𝑧”⟩ ∈ (Base‘𝑀)) → ((𝑀 Σg (𝑈𝑦))(+g𝑀)⟨“𝑧”⟩) = ((𝑀 Σg (𝑈𝑦)) ++ ⟨“𝑧”⟩))
6664, 55, 65syl2anc 691 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ((𝑀 Σg (𝑈𝑦))(+g𝑀)⟨“𝑧”⟩) = ((𝑀 Σg (𝑈𝑦)) ++ ⟨“𝑧”⟩))
6762, 66eqtrd 2644 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ((𝑀 Σg (𝑈𝑦))(+g𝑀)(𝑀 Σg ⟨“⟨“𝑧”⟩”⟩)) = ((𝑀 Σg (𝑈𝑦)) ++ ⟨“𝑧”⟩))
6859, 67eqtrd 2644 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑀 Σg ((𝑈𝑦) ++ ⟨“⟨“𝑧”⟩”⟩)) = ((𝑀 Σg (𝑈𝑦)) ++ ⟨“𝑧”⟩))
6944, 68eqtrd 2644 . . . . . . 7 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = ((𝑀 Σg (𝑈𝑦)) ++ ⟨“𝑧”⟩))
7069eqeq1d 2612 . . . . . 6 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ((𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = (𝑦 ++ ⟨“𝑧”⟩) ↔ ((𝑀 Σg (𝑈𝑦)) ++ ⟨“𝑧”⟩) = (𝑦 ++ ⟨“𝑧”⟩)))
7127, 70syl5ibr 235 . . . . 5 ((𝐼𝑉 ∧ (𝑦 ∈ Word 𝐼𝑧𝐼)) → ((𝑀 Σg (𝑈𝑦)) = 𝑦 → (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = (𝑦 ++ ⟨“𝑧”⟩)))
7271expcom 450 . . . 4 ((𝑦 ∈ Word 𝐼𝑧𝐼) → (𝐼𝑉 → ((𝑀 Σg (𝑈𝑦)) = 𝑦 → (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = (𝑦 ++ ⟨“𝑧”⟩))))
7372a2d 29 . . 3 ((𝑦 ∈ Word 𝐼𝑧𝐼) → ((𝐼𝑉 → (𝑀 Σg (𝑈𝑦)) = 𝑦) → (𝐼𝑉 → (𝑀 Σg (𝑈 ∘ (𝑦 ++ ⟨“𝑧”⟩))) = (𝑦 ++ ⟨“𝑧”⟩))))
747, 12, 17, 22, 26, 73wrdind 13328 . 2 (𝑊 ∈ Word 𝐼 → (𝐼𝑉 → (𝑀 Σg (𝑈𝑊)) = 𝑊))
7574impcom 445 1 ((𝐼𝑉𝑊 ∈ Word 𝐼) → (𝑀 Σg (𝑈𝑊)) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  c0 3874  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  Word cword 13146   ++ cconcat 13148  ⟨“cs1 13149  Basecbs 15695  +gcplusg 15768   Σg cgsu 15924  Mndcmnd 17117  freeMndcfrmd 17207  varFMndcvrmd 17208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-frmd 17209  df-vrmd 17210
This theorem is referenced by:  frmdss2  17223  frmdup3lem  17226  frgpup3lem  18013
  Copyright terms: Public domain W3C validator