MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpnabllem2 Structured version   Visualization version   GIF version

Theorem frgpnabllem2 18100
Description: Lemma for frgpnabl 18101. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
frgpnabl.g 𝐺 = (freeGrp‘𝐼)
frgpnabl.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
frgpnabl.r = ( ~FG𝐼)
frgpnabl.p + = (+g𝐺)
frgpnabl.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
frgpnabl.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
frgpnabl.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
frgpnabl.u 𝑈 = (varFGrp𝐼)
frgpnabl.i (𝜑𝐼 ∈ V)
frgpnabl.a (𝜑𝐴𝐼)
frgpnabl.b (𝜑𝐵𝐼)
frgpnabl.n (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) = ((𝑈𝐵) + (𝑈𝐴)))
Assertion
Ref Expression
frgpnabllem2 (𝜑𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑣,𝑛,𝑤,𝑥,𝑦,𝑧,𝐼   𝜑,𝑥   𝑥, ,𝑦,𝑧   𝑥,𝐵   𝑛,𝑊,𝑣,𝑤,𝑥,𝑦,𝑧   𝑥,𝐺   𝑛,𝑀,𝑣,𝑤,𝑥   𝑥,𝑇
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐴(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐵(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)   + (𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)   (𝑤,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑈(𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)   𝐺(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑀(𝑦,𝑧)

Proof of Theorem frgpnabllem2
Dummy variables 𝑑 𝑚 𝑡 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpnabl.a . 2 (𝜑𝐴𝐼)
2 0ex 4718 . . 3 ∅ ∈ V
32a1i 11 . 2 (𝜑 → ∅ ∈ V)
4 frgpnabl.d . . . . . . . 8 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
5 difss 3699 . . . . . . . 8 (𝑊 𝑥𝑊 ran (𝑇𝑥)) ⊆ 𝑊
64, 5eqsstri 3598 . . . . . . 7 𝐷𝑊
7 inss1 3795 . . . . . . . 8 (𝐷 ∩ ((𝑈𝐵) + (𝑈𝐴))) ⊆ 𝐷
8 frgpnabl.g . . . . . . . . 9 𝐺 = (freeGrp‘𝐼)
9 frgpnabl.w . . . . . . . . 9 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
10 frgpnabl.r . . . . . . . . 9 = ( ~FG𝐼)
11 frgpnabl.p . . . . . . . . 9 + = (+g𝐺)
12 frgpnabl.m . . . . . . . . 9 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
13 frgpnabl.t . . . . . . . . 9 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
14 frgpnabl.u . . . . . . . . 9 𝑈 = (varFGrp𝐼)
15 frgpnabl.i . . . . . . . . 9 (𝜑𝐼 ∈ V)
16 frgpnabl.b . . . . . . . . 9 (𝜑𝐵𝐼)
178, 9, 10, 11, 12, 13, 4, 14, 15, 16, 1frgpnabllem1 18099 . . . . . . . 8 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ (𝐷 ∩ ((𝑈𝐵) + (𝑈𝐴))))
187, 17sseldi 3566 . . . . . . 7 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ 𝐷)
196, 18sseldi 3566 . . . . . 6 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ 𝑊)
20 eqid 2610 . . . . . . 7 (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1))) = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1)))
219, 10, 12, 13, 4, 20efgredeu 17988 . . . . . 6 (⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ 𝑊 → ∃!𝑑𝐷 𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
22 reurmo 3138 . . . . . 6 (∃!𝑑𝐷 𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ → ∃*𝑑𝐷 𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
2319, 21, 223syl 18 . . . . 5 (𝜑 → ∃*𝑑𝐷 𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
24 inss1 3795 . . . . . 6 (𝐷 ∩ ((𝑈𝐴) + (𝑈𝐵))) ⊆ 𝐷
258, 9, 10, 11, 12, 13, 4, 14, 15, 1, 16frgpnabllem1 18099 . . . . . 6 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ (𝐷 ∩ ((𝑈𝐴) + (𝑈𝐵))))
2624, 25sseldi 3566 . . . . 5 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ 𝐷)
279, 10efger 17954 . . . . . . . . 9 Er 𝑊
2827a1i 11 . . . . . . . 8 (𝜑 Er 𝑊)
298frgpgrp 17998 . . . . . . . . . . 11 (𝐼 ∈ V → 𝐺 ∈ Grp)
3015, 29syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ Grp)
31 eqid 2610 . . . . . . . . . . . . 13 (Base‘𝐺) = (Base‘𝐺)
3210, 14, 8, 31vrgpf 18004 . . . . . . . . . . . 12 (𝐼 ∈ V → 𝑈:𝐼⟶(Base‘𝐺))
3315, 32syl 17 . . . . . . . . . . 11 (𝜑𝑈:𝐼⟶(Base‘𝐺))
3433, 1ffvelrnd 6268 . . . . . . . . . 10 (𝜑 → (𝑈𝐴) ∈ (Base‘𝐺))
3533, 16ffvelrnd 6268 . . . . . . . . . 10 (𝜑 → (𝑈𝐵) ∈ (Base‘𝐺))
3631, 11grpcl 17253 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑈𝐴) ∈ (Base‘𝐺) ∧ (𝑈𝐵) ∈ (Base‘𝐺)) → ((𝑈𝐴) + (𝑈𝐵)) ∈ (Base‘𝐺))
3730, 34, 35, 36syl3anc 1318 . . . . . . . . 9 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) ∈ (Base‘𝐺))
38 eqid 2610 . . . . . . . . . . . 12 (freeMnd‘(𝐼 × 2𝑜)) = (freeMnd‘(𝐼 × 2𝑜))
398, 38, 10frgpval 17994 . . . . . . . . . . 11 (𝐼 ∈ V → 𝐺 = ((freeMnd‘(𝐼 × 2𝑜)) /s ))
4015, 39syl 17 . . . . . . . . . 10 (𝜑𝐺 = ((freeMnd‘(𝐼 × 2𝑜)) /s ))
41 2on 7455 . . . . . . . . . . . . . 14 2𝑜 ∈ On
42 xpexg 6858 . . . . . . . . . . . . . 14 ((𝐼 ∈ V ∧ 2𝑜 ∈ On) → (𝐼 × 2𝑜) ∈ V)
4315, 41, 42sylancl 693 . . . . . . . . . . . . 13 (𝜑 → (𝐼 × 2𝑜) ∈ V)
44 wrdexg 13170 . . . . . . . . . . . . 13 ((𝐼 × 2𝑜) ∈ V → Word (𝐼 × 2𝑜) ∈ V)
45 fvi 6165 . . . . . . . . . . . . 13 (Word (𝐼 × 2𝑜) ∈ V → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜))
4643, 44, 453syl 18 . . . . . . . . . . . 12 (𝜑 → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜))
479, 46syl5eq 2656 . . . . . . . . . . 11 (𝜑𝑊 = Word (𝐼 × 2𝑜))
48 eqid 2610 . . . . . . . . . . . . 13 (Base‘(freeMnd‘(𝐼 × 2𝑜))) = (Base‘(freeMnd‘(𝐼 × 2𝑜)))
4938, 48frmdbas 17212 . . . . . . . . . . . 12 ((𝐼 × 2𝑜) ∈ V → (Base‘(freeMnd‘(𝐼 × 2𝑜))) = Word (𝐼 × 2𝑜))
5043, 49syl 17 . . . . . . . . . . 11 (𝜑 → (Base‘(freeMnd‘(𝐼 × 2𝑜))) = Word (𝐼 × 2𝑜))
5147, 50eqtr4d 2647 . . . . . . . . . 10 (𝜑𝑊 = (Base‘(freeMnd‘(𝐼 × 2𝑜))))
52 fvex 6113 . . . . . . . . . . . 12 ( ~FG𝐼) ∈ V
5310, 52eqeltri 2684 . . . . . . . . . . 11 ∈ V
5453a1i 11 . . . . . . . . . 10 (𝜑 ∈ V)
55 fvex 6113 . . . . . . . . . . 11 (freeMnd‘(𝐼 × 2𝑜)) ∈ V
5655a1i 11 . . . . . . . . . 10 (𝜑 → (freeMnd‘(𝐼 × 2𝑜)) ∈ V)
5740, 51, 54, 56qusbas 16028 . . . . . . . . 9 (𝜑 → (𝑊 / ) = (Base‘𝐺))
5837, 57eleqtrrd 2691 . . . . . . . 8 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) ∈ (𝑊 / ))
59 inss2 3796 . . . . . . . . 9 (𝐷 ∩ ((𝑈𝐴) + (𝑈𝐵))) ⊆ ((𝑈𝐴) + (𝑈𝐵))
6059, 25sseldi 3566 . . . . . . . 8 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ((𝑈𝐴) + (𝑈𝐵)))
61 qsel 7713 . . . . . . . 8 (( Er 𝑊 ∧ ((𝑈𝐴) + (𝑈𝐵)) ∈ (𝑊 / ) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ((𝑈𝐴) + (𝑈𝐵))) → ((𝑈𝐴) + (𝑈𝐵)) = [⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩] )
6228, 58, 60, 61syl3anc 1318 . . . . . . 7 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) = [⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩] )
63 inss2 3796 . . . . . . . . . 10 (𝐷 ∩ ((𝑈𝐵) + (𝑈𝐴))) ⊆ ((𝑈𝐵) + (𝑈𝐴))
6463, 17sseldi 3566 . . . . . . . . 9 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ ((𝑈𝐵) + (𝑈𝐴)))
65 frgpnabl.n . . . . . . . . 9 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) = ((𝑈𝐵) + (𝑈𝐴)))
6664, 65eleqtrrd 2691 . . . . . . . 8 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ ((𝑈𝐴) + (𝑈𝐵)))
67 qsel 7713 . . . . . . . 8 (( Er 𝑊 ∧ ((𝑈𝐴) + (𝑈𝐵)) ∈ (𝑊 / ) ∧ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ ((𝑈𝐴) + (𝑈𝐵))) → ((𝑈𝐴) + (𝑈𝐵)) = [⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩] )
6828, 58, 66, 67syl3anc 1318 . . . . . . 7 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) = [⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩] )
6962, 68eqtr3d 2646 . . . . . 6 (𝜑 → [⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩] = [⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩] )
706, 26sseldi 3566 . . . . . . 7 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ 𝑊)
7128, 70erth 7678 . . . . . 6 (𝜑 → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ↔ [⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩] = [⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩] ))
7269, 71mpbird 246 . . . . 5 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
7328, 19erref 7649 . . . . 5 (𝜑 → ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
74 breq1 4586 . . . . . 6 (𝑑 = ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ → (𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ↔ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩))
75 breq1 4586 . . . . . 6 (𝑑 = ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ → (𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ↔ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩))
7674, 75rmoi 3496 . . . . 5 ((∃*𝑑𝐷 𝑑 ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∧ (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ 𝐷 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩) ∧ (⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ∈ 𝐷 ∧ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩ ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)) → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
7723, 26, 72, 18, 73, 76syl122anc 1327 . . . 4 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩)
7877fveq1d 6105 . . 3 (𝜑 → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘0) = (⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩‘0))
79 opex 4859 . . . 4 𝐴, ∅⟩ ∈ V
80 s2fv0 13482 . . . 4 (⟨𝐴, ∅⟩ ∈ V → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘0) = ⟨𝐴, ∅⟩)
8179, 80ax-mp 5 . . 3 (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘0) = ⟨𝐴, ∅⟩
82 opex 4859 . . . 4 𝐵, ∅⟩ ∈ V
83 s2fv0 13482 . . . 4 (⟨𝐵, ∅⟩ ∈ V → (⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩‘0) = ⟨𝐵, ∅⟩)
8482, 83ax-mp 5 . . 3 (⟨“⟨𝐵, ∅⟩⟨𝐴, ∅⟩”⟩‘0) = ⟨𝐵, ∅⟩
8578, 81, 843eqtr3g 2667 . 2 (𝜑 → ⟨𝐴, ∅⟩ = ⟨𝐵, ∅⟩)
86 opthg 4872 . . 3 ((𝐴𝐼 ∧ ∅ ∈ V) → (⟨𝐴, ∅⟩ = ⟨𝐵, ∅⟩ ↔ (𝐴 = 𝐵 ∧ ∅ = ∅)))
8786simprbda 651 . 2 (((𝐴𝐼 ∧ ∅ ∈ V) ∧ ⟨𝐴, ∅⟩ = ⟨𝐵, ∅⟩) → 𝐴 = 𝐵)
881, 3, 85, 87syl21anc 1317 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  ∃!wreu 2898  ∃*wrmo 2899  {crab 2900  Vcvv 3173  cdif 3537  cin 3539  c0 3874  {csn 4125  cop 4131  cotp 4133   ciun 4455   class class class wbr 4583  cmpt 4643   I cid 4948   × cxp 5036  ran crn 5039  Oncon0 5640  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  1𝑜c1o 7440  2𝑜c2o 7441   Er wer 7626  [cec 7627   / cqs 7628  0cc0 9815  1c1 9816  cmin 10145  ...cfz 12197  ..^cfzo 12334  #chash 12979  Word cword 13146   splice csplice 13151  ⟨“cs2 13437  Basecbs 15695  +gcplusg 15768   /s cqus 15988  freeMndcfrmd 17207  Grpcgrp 17245   ~FG cefg 17942  freeGrpcfrgp 17943  varFGrpcvrgp 17944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-splice 13159  df-reverse 13160  df-s2 13444  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-0g 15925  df-imas 15991  df-qus 15992  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-frmd 17209  df-grp 17248  df-efg 17945  df-frgp 17946  df-vrgp 17947
This theorem is referenced by:  frgpnabl  18101
  Copyright terms: Public domain W3C validator