MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fparlem4 Structured version   Visualization version   GIF version

Theorem fparlem4 7167
Description: Lemma for fpar 7168. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fparlem4 (𝐺 Fn 𝐵 → ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))) = 𝑦𝐵 ((V × {𝑦}) × (V × {(𝐺𝑦)})))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐺

Proof of Theorem fparlem4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 coiun 5562 . 2 ((2nd ↾ (V × V)) ∘ 𝑦𝐵 (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦}))) = 𝑦𝐵 ((2nd ↾ (V × V)) ∘ (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦})))
2 inss1 3795 . . . . 5 (dom 𝐺 ∩ ran (2nd ↾ (V × V))) ⊆ dom 𝐺
3 fndm 5904 . . . . 5 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
42, 3syl5sseq 3616 . . . 4 (𝐺 Fn 𝐵 → (dom 𝐺 ∩ ran (2nd ↾ (V × V))) ⊆ 𝐵)
5 dfco2a 5552 . . . 4 ((dom 𝐺 ∩ ran (2nd ↾ (V × V))) ⊆ 𝐵 → (𝐺 ∘ (2nd ↾ (V × V))) = 𝑦𝐵 (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦})))
64, 5syl 17 . . 3 (𝐺 Fn 𝐵 → (𝐺 ∘ (2nd ↾ (V × V))) = 𝑦𝐵 (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦})))
76coeq2d 5206 . 2 (𝐺 Fn 𝐵 → ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))) = ((2nd ↾ (V × V)) ∘ 𝑦𝐵 (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦}))))
8 inss1 3795 . . . . . . . . 9 (dom ({(𝐺𝑦)} × (V × {𝑦})) ∩ ran (2nd ↾ (V × V))) ⊆ dom ({(𝐺𝑦)} × (V × {𝑦}))
9 dmxpss 5484 . . . . . . . . 9 dom ({(𝐺𝑦)} × (V × {𝑦})) ⊆ {(𝐺𝑦)}
108, 9sstri 3577 . . . . . . . 8 (dom ({(𝐺𝑦)} × (V × {𝑦})) ∩ ran (2nd ↾ (V × V))) ⊆ {(𝐺𝑦)}
11 dfco2a 5552 . . . . . . . 8 ((dom ({(𝐺𝑦)} × (V × {𝑦})) ∩ ran (2nd ↾ (V × V))) ⊆ {(𝐺𝑦)} → (({(𝐺𝑦)} × (V × {𝑦})) ∘ (2nd ↾ (V × V))) = 𝑥 ∈ {(𝐺𝑦)} (((2nd ↾ (V × V)) “ {𝑥}) × (({(𝐺𝑦)} × (V × {𝑦})) “ {𝑥})))
1210, 11ax-mp 5 . . . . . . 7 (({(𝐺𝑦)} × (V × {𝑦})) ∘ (2nd ↾ (V × V))) = 𝑥 ∈ {(𝐺𝑦)} (((2nd ↾ (V × V)) “ {𝑥}) × (({(𝐺𝑦)} × (V × {𝑦})) “ {𝑥}))
13 fvex 6113 . . . . . . . 8 (𝐺𝑦) ∈ V
14 fparlem2 7165 . . . . . . . . . 10 ((2nd ↾ (V × V)) “ {𝑥}) = (V × {𝑥})
15 sneq 4135 . . . . . . . . . . 11 (𝑥 = (𝐺𝑦) → {𝑥} = {(𝐺𝑦)})
1615xpeq2d 5063 . . . . . . . . . 10 (𝑥 = (𝐺𝑦) → (V × {𝑥}) = (V × {(𝐺𝑦)}))
1714, 16syl5eq 2656 . . . . . . . . 9 (𝑥 = (𝐺𝑦) → ((2nd ↾ (V × V)) “ {𝑥}) = (V × {(𝐺𝑦)}))
1815imaeq2d 5385 . . . . . . . . . 10 (𝑥 = (𝐺𝑦) → (({(𝐺𝑦)} × (V × {𝑦})) “ {𝑥}) = (({(𝐺𝑦)} × (V × {𝑦})) “ {(𝐺𝑦)}))
19 df-ima 5051 . . . . . . . . . . 11 (({(𝐺𝑦)} × (V × {𝑦})) “ {(𝐺𝑦)}) = ran (({(𝐺𝑦)} × (V × {𝑦})) ↾ {(𝐺𝑦)})
20 ssid 3587 . . . . . . . . . . . . . 14 {(𝐺𝑦)} ⊆ {(𝐺𝑦)}
21 xpssres 5354 . . . . . . . . . . . . . 14 ({(𝐺𝑦)} ⊆ {(𝐺𝑦)} → (({(𝐺𝑦)} × (V × {𝑦})) ↾ {(𝐺𝑦)}) = ({(𝐺𝑦)} × (V × {𝑦})))
2220, 21ax-mp 5 . . . . . . . . . . . . 13 (({(𝐺𝑦)} × (V × {𝑦})) ↾ {(𝐺𝑦)}) = ({(𝐺𝑦)} × (V × {𝑦}))
2322rneqi 5273 . . . . . . . . . . . 12 ran (({(𝐺𝑦)} × (V × {𝑦})) ↾ {(𝐺𝑦)}) = ran ({(𝐺𝑦)} × (V × {𝑦}))
2413snnz 4252 . . . . . . . . . . . . 13 {(𝐺𝑦)} ≠ ∅
25 rnxp 5483 . . . . . . . . . . . . 13 ({(𝐺𝑦)} ≠ ∅ → ran ({(𝐺𝑦)} × (V × {𝑦})) = (V × {𝑦}))
2624, 25ax-mp 5 . . . . . . . . . . . 12 ran ({(𝐺𝑦)} × (V × {𝑦})) = (V × {𝑦})
2723, 26eqtri 2632 . . . . . . . . . . 11 ran (({(𝐺𝑦)} × (V × {𝑦})) ↾ {(𝐺𝑦)}) = (V × {𝑦})
2819, 27eqtri 2632 . . . . . . . . . 10 (({(𝐺𝑦)} × (V × {𝑦})) “ {(𝐺𝑦)}) = (V × {𝑦})
2918, 28syl6eq 2660 . . . . . . . . 9 (𝑥 = (𝐺𝑦) → (({(𝐺𝑦)} × (V × {𝑦})) “ {𝑥}) = (V × {𝑦}))
3017, 29xpeq12d 5064 . . . . . . . 8 (𝑥 = (𝐺𝑦) → (((2nd ↾ (V × V)) “ {𝑥}) × (({(𝐺𝑦)} × (V × {𝑦})) “ {𝑥})) = ((V × {(𝐺𝑦)}) × (V × {𝑦})))
3113, 30iunxsn 4539 . . . . . . 7 𝑥 ∈ {(𝐺𝑦)} (((2nd ↾ (V × V)) “ {𝑥}) × (({(𝐺𝑦)} × (V × {𝑦})) “ {𝑥})) = ((V × {(𝐺𝑦)}) × (V × {𝑦}))
3212, 31eqtri 2632 . . . . . 6 (({(𝐺𝑦)} × (V × {𝑦})) ∘ (2nd ↾ (V × V))) = ((V × {(𝐺𝑦)}) × (V × {𝑦}))
3332cnveqi 5219 . . . . 5 (({(𝐺𝑦)} × (V × {𝑦})) ∘ (2nd ↾ (V × V))) = ((V × {(𝐺𝑦)}) × (V × {𝑦}))
34 cnvco 5230 . . . . 5 (({(𝐺𝑦)} × (V × {𝑦})) ∘ (2nd ↾ (V × V))) = ((2nd ↾ (V × V)) ∘ ({(𝐺𝑦)} × (V × {𝑦})))
35 cnvxp 5470 . . . . 5 ((V × {(𝐺𝑦)}) × (V × {𝑦})) = ((V × {𝑦}) × (V × {(𝐺𝑦)}))
3633, 34, 353eqtr3i 2640 . . . 4 ((2nd ↾ (V × V)) ∘ ({(𝐺𝑦)} × (V × {𝑦}))) = ((V × {𝑦}) × (V × {(𝐺𝑦)}))
37 fparlem2 7165 . . . . . . . . 9 ((2nd ↾ (V × V)) “ {𝑦}) = (V × {𝑦})
3837xpeq2i 5060 . . . . . . . 8 ({(𝐺𝑦)} × ((2nd ↾ (V × V)) “ {𝑦})) = ({(𝐺𝑦)} × (V × {𝑦}))
39 fnsnfv 6168 . . . . . . . . 9 ((𝐺 Fn 𝐵𝑦𝐵) → {(𝐺𝑦)} = (𝐺 “ {𝑦}))
4039xpeq1d 5062 . . . . . . . 8 ((𝐺 Fn 𝐵𝑦𝐵) → ({(𝐺𝑦)} × ((2nd ↾ (V × V)) “ {𝑦})) = ((𝐺 “ {𝑦}) × ((2nd ↾ (V × V)) “ {𝑦})))
4138, 40syl5eqr 2658 . . . . . . 7 ((𝐺 Fn 𝐵𝑦𝐵) → ({(𝐺𝑦)} × (V × {𝑦})) = ((𝐺 “ {𝑦}) × ((2nd ↾ (V × V)) “ {𝑦})))
4241cnveqd 5220 . . . . . 6 ((𝐺 Fn 𝐵𝑦𝐵) → ({(𝐺𝑦)} × (V × {𝑦})) = ((𝐺 “ {𝑦}) × ((2nd ↾ (V × V)) “ {𝑦})))
43 cnvxp 5470 . . . . . 6 ((𝐺 “ {𝑦}) × ((2nd ↾ (V × V)) “ {𝑦})) = (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦}))
4442, 43syl6eq 2660 . . . . 5 ((𝐺 Fn 𝐵𝑦𝐵) → ({(𝐺𝑦)} × (V × {𝑦})) = (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦})))
4544coeq2d 5206 . . . 4 ((𝐺 Fn 𝐵𝑦𝐵) → ((2nd ↾ (V × V)) ∘ ({(𝐺𝑦)} × (V × {𝑦}))) = ((2nd ↾ (V × V)) ∘ (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦}))))
4636, 45syl5eqr 2658 . . 3 ((𝐺 Fn 𝐵𝑦𝐵) → ((V × {𝑦}) × (V × {(𝐺𝑦)})) = ((2nd ↾ (V × V)) ∘ (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦}))))
4746iuneq2dv 4478 . 2 (𝐺 Fn 𝐵 𝑦𝐵 ((V × {𝑦}) × (V × {(𝐺𝑦)})) = 𝑦𝐵 ((2nd ↾ (V × V)) ∘ (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦}))))
481, 7, 473eqtr4a 2670 1 (𝐺 Fn 𝐵 → ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))) = 𝑦𝐵 ((V × {𝑦}) × (V × {(𝐺𝑦)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  Vcvv 3173  cin 3539  wss 3540  c0 3874  {csn 4125   ciun 4455   × cxp 5036  ccnv 5037  dom cdm 5038  ran crn 5039  cres 5040  cima 5041  ccom 5042   Fn wfn 5799  cfv 5804  2nd c2nd 7058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-1st 7059  df-2nd 7060
This theorem is referenced by:  fpar  7168
  Copyright terms: Public domain W3C validator