MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcof1 Structured version   Visualization version   GIF version

Theorem fcof1 6442
Description: An application is injective if a retraction exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 11-Nov-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
fcof1 ((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴1-1𝐵)

Proof of Theorem fcof1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 472 . 2 ((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴𝐵)
2 simprr 792 . . . . . . . 8 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹𝑥) = (𝐹𝑦))
32fveq2d 6107 . . . . . . 7 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑅‘(𝐹𝑥)) = (𝑅‘(𝐹𝑦)))
4 simpll 786 . . . . . . . 8 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝐹:𝐴𝐵)
5 simprll 798 . . . . . . . 8 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑥𝐴)
6 fvco3 6185 . . . . . . . 8 ((𝐹:𝐴𝐵𝑥𝐴) → ((𝑅𝐹)‘𝑥) = (𝑅‘(𝐹𝑥)))
74, 5, 6syl2anc 691 . . . . . . 7 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑅𝐹)‘𝑥) = (𝑅‘(𝐹𝑥)))
8 simprlr 799 . . . . . . . 8 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑦𝐴)
9 fvco3 6185 . . . . . . . 8 ((𝐹:𝐴𝐵𝑦𝐴) → ((𝑅𝐹)‘𝑦) = (𝑅‘(𝐹𝑦)))
104, 8, 9syl2anc 691 . . . . . . 7 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑅𝐹)‘𝑦) = (𝑅‘(𝐹𝑦)))
113, 7, 103eqtr4d 2654 . . . . . 6 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑅𝐹)‘𝑥) = ((𝑅𝐹)‘𝑦))
12 simplr 788 . . . . . . 7 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑅𝐹) = ( I ↾ 𝐴))
1312fveq1d 6105 . . . . . 6 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑅𝐹)‘𝑥) = (( I ↾ 𝐴)‘𝑥))
1412fveq1d 6105 . . . . . 6 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑅𝐹)‘𝑦) = (( I ↾ 𝐴)‘𝑦))
1511, 13, 143eqtr3d 2652 . . . . 5 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (( I ↾ 𝐴)‘𝑥) = (( I ↾ 𝐴)‘𝑦))
16 fvresi 6344 . . . . . 6 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
175, 16syl 17 . . . . 5 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (( I ↾ 𝐴)‘𝑥) = 𝑥)
18 fvresi 6344 . . . . . 6 (𝑦𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦)
198, 18syl 17 . . . . 5 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (( I ↾ 𝐴)‘𝑦) = 𝑦)
2015, 17, 193eqtr3d 2652 . . . 4 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑥 = 𝑦)
2120expr 641 . . 3 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
2221ralrimivva 2954 . 2 ((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) → ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
23 dff13 6416 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
241, 22, 23sylanbrc 695 1 ((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896   I cid 4948  cres 5040  ccom 5042  wf 5800  1-1wf1 5801  cfv 5804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fv 5812
This theorem is referenced by:  fcof1od  6449
  Copyright terms: Public domain W3C validator