Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faclim2 Structured version   Visualization version   GIF version

Theorem faclim2 30887
Description: Another factorial limit due to Euler. (Contributed by Scott Fenton, 17-Dec-2017.)
Hypothesis
Ref Expression
faclim2.1 𝐹 = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀))))
Assertion
Ref Expression
faclim2 (𝑀 ∈ ℕ0𝐹 ⇝ 1)
Distinct variable group:   𝑛,𝑀
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem faclim2
Dummy variables 𝑚 𝑎 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 faclim2.1 . 2 𝐹 = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀))))
2 oveq2 6557 . . . . . . 7 (𝑎 = 0 → ((𝑛 + 1)↑𝑎) = ((𝑛 + 1)↑0))
32oveq2d 6565 . . . . . 6 (𝑎 = 0 → ((!‘𝑛) · ((𝑛 + 1)↑𝑎)) = ((!‘𝑛) · ((𝑛 + 1)↑0)))
4 oveq2 6557 . . . . . . 7 (𝑎 = 0 → (𝑛 + 𝑎) = (𝑛 + 0))
54fveq2d 6107 . . . . . 6 (𝑎 = 0 → (!‘(𝑛 + 𝑎)) = (!‘(𝑛 + 0)))
63, 5oveq12d 6567 . . . . 5 (𝑎 = 0 → (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎))) = (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))
76mpteq2dv 4673 . . . 4 (𝑎 = 0 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))))
87breq1d 4593 . . 3 (𝑎 = 0 → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) ⇝ 1 ↔ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) ⇝ 1))
9 oveq2 6557 . . . . . . 7 (𝑎 = 𝑚 → ((𝑛 + 1)↑𝑎) = ((𝑛 + 1)↑𝑚))
109oveq2d 6565 . . . . . 6 (𝑎 = 𝑚 → ((!‘𝑛) · ((𝑛 + 1)↑𝑎)) = ((!‘𝑛) · ((𝑛 + 1)↑𝑚)))
11 oveq2 6557 . . . . . . 7 (𝑎 = 𝑚 → (𝑛 + 𝑎) = (𝑛 + 𝑚))
1211fveq2d 6107 . . . . . 6 (𝑎 = 𝑚 → (!‘(𝑛 + 𝑎)) = (!‘(𝑛 + 𝑚)))
1310, 12oveq12d 6567 . . . . 5 (𝑎 = 𝑚 → (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎))) = (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))
1413mpteq2dv 4673 . . . 4 (𝑎 = 𝑚 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))))
1514breq1d 4593 . . 3 (𝑎 = 𝑚 → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) ⇝ 1 ↔ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1))
16 oveq2 6557 . . . . . . 7 (𝑎 = (𝑚 + 1) → ((𝑛 + 1)↑𝑎) = ((𝑛 + 1)↑(𝑚 + 1)))
1716oveq2d 6565 . . . . . 6 (𝑎 = (𝑚 + 1) → ((!‘𝑛) · ((𝑛 + 1)↑𝑎)) = ((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))))
18 oveq2 6557 . . . . . . 7 (𝑎 = (𝑚 + 1) → (𝑛 + 𝑎) = (𝑛 + (𝑚 + 1)))
1918fveq2d 6107 . . . . . 6 (𝑎 = (𝑚 + 1) → (!‘(𝑛 + 𝑎)) = (!‘(𝑛 + (𝑚 + 1))))
2017, 19oveq12d 6567 . . . . 5 (𝑎 = (𝑚 + 1) → (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎))) = (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))
2120mpteq2dv 4673 . . . 4 (𝑎 = (𝑚 + 1) → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))))
2221breq1d 4593 . . 3 (𝑎 = (𝑚 + 1) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) ⇝ 1 ↔ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ⇝ 1))
23 oveq2 6557 . . . . . . 7 (𝑎 = 𝑀 → ((𝑛 + 1)↑𝑎) = ((𝑛 + 1)↑𝑀))
2423oveq2d 6565 . . . . . 6 (𝑎 = 𝑀 → ((!‘𝑛) · ((𝑛 + 1)↑𝑎)) = ((!‘𝑛) · ((𝑛 + 1)↑𝑀)))
25 oveq2 6557 . . . . . . 7 (𝑎 = 𝑀 → (𝑛 + 𝑎) = (𝑛 + 𝑀))
2625fveq2d 6107 . . . . . 6 (𝑎 = 𝑀 → (!‘(𝑛 + 𝑎)) = (!‘(𝑛 + 𝑀)))
2724, 26oveq12d 6567 . . . . 5 (𝑎 = 𝑀 → (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎))) = (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀))))
2827mpteq2dv 4673 . . . 4 (𝑎 = 𝑀 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀)))))
2928breq1d 4593 . . 3 (𝑎 = 𝑀 → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) ⇝ 1 ↔ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀)))) ⇝ 1))
30 nnuz 11599 . . . . 5 ℕ = (ℤ‘1)
31 1zzd 11285 . . . . 5 (⊤ → 1 ∈ ℤ)
32 nnex 10903 . . . . . . 7 ℕ ∈ V
3332mptex 6390 . . . . . 6 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) ∈ V
3433a1i 11 . . . . 5 (⊤ → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) ∈ V)
35 1cnd 9935 . . . . 5 (⊤ → 1 ∈ ℂ)
36 fveq2 6103 . . . . . . . . . 10 (𝑛 = 𝑚 → (!‘𝑛) = (!‘𝑚))
37 oveq1 6556 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝑛 + 1) = (𝑚 + 1))
3837oveq1d 6564 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝑛 + 1)↑0) = ((𝑚 + 1)↑0))
3936, 38oveq12d 6567 . . . . . . . . 9 (𝑛 = 𝑚 → ((!‘𝑛) · ((𝑛 + 1)↑0)) = ((!‘𝑚) · ((𝑚 + 1)↑0)))
40 oveq1 6556 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝑛 + 0) = (𝑚 + 0))
4140fveq2d 6107 . . . . . . . . 9 (𝑛 = 𝑚 → (!‘(𝑛 + 0)) = (!‘(𝑚 + 0)))
4239, 41oveq12d 6567 . . . . . . . 8 (𝑛 = 𝑚 → (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))) = (((!‘𝑚) · ((𝑚 + 1)↑0)) / (!‘(𝑚 + 0))))
43 eqid 2610 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))
44 ovex 6577 . . . . . . . 8 (((!‘𝑚) · ((𝑚 + 1)↑0)) / (!‘(𝑚 + 0))) ∈ V
4542, 43, 44fvmpt 6191 . . . . . . 7 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))‘𝑚) = (((!‘𝑚) · ((𝑚 + 1)↑0)) / (!‘(𝑚 + 0))))
46 peano2nn 10909 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
4746nncnd 10913 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℂ)
4847exp0d 12864 . . . . . . . . . 10 (𝑚 ∈ ℕ → ((𝑚 + 1)↑0) = 1)
4948oveq2d 6565 . . . . . . . . 9 (𝑚 ∈ ℕ → ((!‘𝑚) · ((𝑚 + 1)↑0)) = ((!‘𝑚) · 1))
50 nnnn0 11176 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
51 faccl 12932 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0 → (!‘𝑚) ∈ ℕ)
5250, 51syl 17 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (!‘𝑚) ∈ ℕ)
5352nncnd 10913 . . . . . . . . . 10 (𝑚 ∈ ℕ → (!‘𝑚) ∈ ℂ)
5453mulid1d 9936 . . . . . . . . 9 (𝑚 ∈ ℕ → ((!‘𝑚) · 1) = (!‘𝑚))
5549, 54eqtrd 2644 . . . . . . . 8 (𝑚 ∈ ℕ → ((!‘𝑚) · ((𝑚 + 1)↑0)) = (!‘𝑚))
56 nncn 10905 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
5756addid1d 10115 . . . . . . . . 9 (𝑚 ∈ ℕ → (𝑚 + 0) = 𝑚)
5857fveq2d 6107 . . . . . . . 8 (𝑚 ∈ ℕ → (!‘(𝑚 + 0)) = (!‘𝑚))
5955, 58oveq12d 6567 . . . . . . 7 (𝑚 ∈ ℕ → (((!‘𝑚) · ((𝑚 + 1)↑0)) / (!‘(𝑚 + 0))) = ((!‘𝑚) / (!‘𝑚)))
6052nnne0d 10942 . . . . . . . 8 (𝑚 ∈ ℕ → (!‘𝑚) ≠ 0)
6153, 60dividd 10678 . . . . . . 7 (𝑚 ∈ ℕ → ((!‘𝑚) / (!‘𝑚)) = 1)
6245, 59, 613eqtrd 2648 . . . . . 6 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))‘𝑚) = 1)
6362adantl 481 . . . . 5 ((⊤ ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))‘𝑚) = 1)
6430, 31, 34, 35, 63climconst 14122 . . . 4 (⊤ → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) ⇝ 1)
6564trud 1484 . . 3 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) ⇝ 1
66 1zzd 11285 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → 1 ∈ ℤ)
67 simpr 476 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1)
6832mptex 6390 . . . . . . 7 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ∈ V
6968a1i 11 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ∈ V)
70 1zzd 11285 . . . . . . . 8 (𝑚 ∈ ℕ0 → 1 ∈ ℤ)
71 1cnd 9935 . . . . . . . 8 (𝑚 ∈ ℕ0 → 1 ∈ ℂ)
72 nn0p1nn 11209 . . . . . . . . 9 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ)
7372nnzd 11357 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℤ)
7432mptex 6390 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) ∈ V
7574a1i 11 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) ∈ V)
76 oveq1 6556 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1))
77 oveq1 6556 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑛 + (𝑚 + 1)) = (𝑘 + (𝑚 + 1)))
7876, 77oveq12d 6567 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝑛 + 1) / (𝑛 + (𝑚 + 1))) = ((𝑘 + 1) / (𝑘 + (𝑚 + 1))))
79 eqid 2610 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) = (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))
80 ovex 6577 . . . . . . . . . 10 ((𝑘 + 1) / (𝑘 + (𝑚 + 1))) ∈ V
8178, 79, 80fvmpt 6191 . . . . . . . . 9 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘) = ((𝑘 + 1) / (𝑘 + (𝑚 + 1))))
8281adantl 481 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘) = ((𝑘 + 1) / (𝑘 + (𝑚 + 1))))
8330, 70, 71, 73, 75, 82divcnvlin 30871 . . . . . . 7 (𝑚 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) ⇝ 1)
8483adantr 480 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) ⇝ 1)
85 simpr 476 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
8685nnnn0d 11228 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
87 faccl 12932 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (!‘𝑛) ∈ ℕ)
8886, 87syl 17 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (!‘𝑛) ∈ ℕ)
89 peano2nn 10909 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
90 nnexpcl 12735 . . . . . . . . . . . . . . 15 (((𝑛 + 1) ∈ ℕ ∧ 𝑚 ∈ ℕ0) → ((𝑛 + 1)↑𝑚) ∈ ℕ)
9189, 90sylan 487 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → ((𝑛 + 1)↑𝑚) ∈ ℕ)
9291ancoms 468 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑛 + 1)↑𝑚) ∈ ℕ)
9388, 92nnmulcld 10945 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((!‘𝑛) · ((𝑛 + 1)↑𝑚)) ∈ ℕ)
9493nnred 10912 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((!‘𝑛) · ((𝑛 + 1)↑𝑚)) ∈ ℝ)
95 nnnn0addcl 11200 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (𝑛 + 𝑚) ∈ ℕ)
9695ancoms 468 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑛 + 𝑚) ∈ ℕ)
9796nnnn0d 11228 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑛 + 𝑚) ∈ ℕ0)
98 faccl 12932 . . . . . . . . . . . 12 ((𝑛 + 𝑚) ∈ ℕ0 → (!‘(𝑛 + 𝑚)) ∈ ℕ)
9997, 98syl 17 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (!‘(𝑛 + 𝑚)) ∈ ℕ)
10094, 99nndivred 10946 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))) ∈ ℝ)
101100recnd 9947 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))) ∈ ℂ)
102 eqid 2610 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))
103101, 102fmptd 6292 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))):ℕ⟶ℂ)
104103ffvelrnda 6267 . . . . . . 7 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) ∈ ℂ)
105104adantlr 747 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) ∈ ℂ)
10689adantl 481 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
107106nnred 10912 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℝ)
10872adantr 480 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
10985, 108nnaddcld 10944 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑛 + (𝑚 + 1)) ∈ ℕ)
110107, 109nndivred 10946 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑛 + 1) / (𝑛 + (𝑚 + 1))) ∈ ℝ)
111110recnd 9947 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑛 + 1) / (𝑛 + (𝑚 + 1))) ∈ ℂ)
112111, 79fmptd 6292 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))):ℕ⟶ℂ)
113112ffvelrnda 6267 . . . . . . 7 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘) ∈ ℂ)
114113adantlr 747 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘) ∈ ℂ)
115 peano2nn 10909 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
116115adantl 481 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
117116nncnd 10913 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℂ)
118 simpl 472 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 𝑚 ∈ ℕ0)
119117, 118expp1d 12871 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑘 + 1)↑(𝑚 + 1)) = (((𝑘 + 1)↑𝑚) · (𝑘 + 1)))
120119oveq2d 6565 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) = ((!‘𝑘) · (((𝑘 + 1)↑𝑚) · (𝑘 + 1))))
121 simpr 476 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
122121nnnn0d 11228 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
123 faccl 12932 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
124122, 123syl 17 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘𝑘) ∈ ℕ)
125124nncnd 10913 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘𝑘) ∈ ℂ)
126 nnexpcl 12735 . . . . . . . . . . . . . . 15 (((𝑘 + 1) ∈ ℕ ∧ 𝑚 ∈ ℕ0) → ((𝑘 + 1)↑𝑚) ∈ ℕ)
127115, 126sylan 487 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → ((𝑘 + 1)↑𝑚) ∈ ℕ)
128127ancoms 468 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑘 + 1)↑𝑚) ∈ ℕ)
129128nncnd 10913 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑘 + 1)↑𝑚) ∈ ℂ)
130125, 129, 117mulassd 9942 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) · (𝑘 + 1)) = ((!‘𝑘) · (((𝑘 + 1)↑𝑚) · (𝑘 + 1))))
131120, 130eqtr4d 2647 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) = (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) · (𝑘 + 1)))
132122, 118nn0addcld 11232 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + 𝑚) ∈ ℕ0)
133 facp1 12927 . . . . . . . . . . . 12 ((𝑘 + 𝑚) ∈ ℕ0 → (!‘((𝑘 + 𝑚) + 1)) = ((!‘(𝑘 + 𝑚)) · ((𝑘 + 𝑚) + 1)))
134132, 133syl 17 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘((𝑘 + 𝑚) + 1)) = ((!‘(𝑘 + 𝑚)) · ((𝑘 + 𝑚) + 1)))
135121nncnd 10913 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
136118nn0cnd 11230 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 𝑚 ∈ ℂ)
137 1cnd 9935 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 1 ∈ ℂ)
138135, 136, 137addassd 9941 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑘 + 𝑚) + 1) = (𝑘 + (𝑚 + 1)))
139138fveq2d 6107 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘((𝑘 + 𝑚) + 1)) = (!‘(𝑘 + (𝑚 + 1))))
140138oveq2d 6565 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((!‘(𝑘 + 𝑚)) · ((𝑘 + 𝑚) + 1)) = ((!‘(𝑘 + 𝑚)) · (𝑘 + (𝑚 + 1))))
141134, 139, 1403eqtr3d 2652 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘(𝑘 + (𝑚 + 1))) = ((!‘(𝑘 + 𝑚)) · (𝑘 + (𝑚 + 1))))
142131, 141oveq12d 6567 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) · (𝑘 + 1)) / ((!‘(𝑘 + 𝑚)) · (𝑘 + (𝑚 + 1)))))
143124, 128nnmulcld 10945 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((!‘𝑘) · ((𝑘 + 1)↑𝑚)) ∈ ℕ)
144143nncnd 10913 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((!‘𝑘) · ((𝑘 + 1)↑𝑚)) ∈ ℂ)
145 faccl 12932 . . . . . . . . . . . 12 ((𝑘 + 𝑚) ∈ ℕ0 → (!‘(𝑘 + 𝑚)) ∈ ℕ)
146132, 145syl 17 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘(𝑘 + 𝑚)) ∈ ℕ)
147146nncnd 10913 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘(𝑘 + 𝑚)) ∈ ℂ)
14872adantr 480 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
149121, 148nnaddcld 10944 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + (𝑚 + 1)) ∈ ℕ)
150149nncnd 10913 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + (𝑚 + 1)) ∈ ℂ)
151146nnne0d 10942 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘(𝑘 + 𝑚)) ≠ 0)
152149nnne0d 10942 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + (𝑚 + 1)) ≠ 0)
153144, 147, 117, 150, 151, 152divmuldivd 10721 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) · ((𝑘 + 1) / (𝑘 + (𝑚 + 1)))) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) · (𝑘 + 1)) / ((!‘(𝑘 + 𝑚)) · (𝑘 + (𝑚 + 1)))))
154142, 153eqtr4d 2647 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) · ((𝑘 + 1) / (𝑘 + (𝑚 + 1)))))
155 fveq2 6103 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
15676oveq1d 6564 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((𝑛 + 1)↑(𝑚 + 1)) = ((𝑘 + 1)↑(𝑚 + 1)))
157155, 156oveq12d 6567 . . . . . . . . . . 11 (𝑛 = 𝑘 → ((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) = ((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))))
15877fveq2d 6107 . . . . . . . . . . 11 (𝑛 = 𝑘 → (!‘(𝑛 + (𝑚 + 1))) = (!‘(𝑘 + (𝑚 + 1))))
159157, 158oveq12d 6567 . . . . . . . . . 10 (𝑛 = 𝑘 → (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))) = (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))))
160 eqid 2610 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))
161 ovex 6577 . . . . . . . . . 10 (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))) ∈ V
162159, 160, 161fvmpt 6191 . . . . . . . . 9 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))‘𝑘) = (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))))
163162adantl 481 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))‘𝑘) = (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))))
16476oveq1d 6564 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ((𝑛 + 1)↑𝑚) = ((𝑘 + 1)↑𝑚))
165155, 164oveq12d 6567 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((!‘𝑛) · ((𝑛 + 1)↑𝑚)) = ((!‘𝑘) · ((𝑘 + 1)↑𝑚)))
166 oveq1 6556 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑛 + 𝑚) = (𝑘 + 𝑚))
167166fveq2d 6107 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (!‘(𝑛 + 𝑚)) = (!‘(𝑘 + 𝑚)))
168165, 167oveq12d 6567 . . . . . . . . . . 11 (𝑛 = 𝑘 → (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))) = (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))))
169 ovex 6577 . . . . . . . . . . 11 (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) ∈ V
170168, 102, 169fvmpt 6191 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) = (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))))
171170, 81oveq12d 6567 . . . . . . . . 9 (𝑘 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘)) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) · ((𝑘 + 1) / (𝑘 + (𝑚 + 1)))))
172171adantl 481 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘)) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) · ((𝑘 + 1) / (𝑘 + (𝑚 + 1)))))
173154, 163, 1723eqtr4d 2654 . . . . . . 7 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))‘𝑘) = (((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘)))
174173adantlr 747 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))‘𝑘) = (((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘)))
17530, 66, 67, 69, 84, 105, 114, 174climmul 14211 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ⇝ (1 · 1))
176 1t1e1 11052 . . . . 5 (1 · 1) = 1
177175, 176syl6breq 4624 . . . 4 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ⇝ 1)
178177ex 449 . . 3 (𝑚 ∈ ℕ0 → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ⇝ 1))
1798, 15, 22, 29, 65, 178nn0ind 11348 . 2 (𝑀 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀)))) ⇝ 1)
1801, 179syl5eqbr 4618 1 (𝑀 ∈ ℕ0𝐹 ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wtru 1476  wcel 1977  Vcvv 3173   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   / cdiv 10563  cn 10897  0cn0 11169  cexp 12722  !cfa 12922  cli 14063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455  df-seq 12664  df-exp 12723  df-fac 12923  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator