MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fac0 Structured version   Visualization version   GIF version

Theorem fac0 12925
Description: The factorial of 0. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
fac0 (!‘0) = 1

Proof of Theorem fac0
StepHypRef Expression
1 c0ex 9913 . 2 0 ∈ V
2 1ex 9914 . 2 1 ∈ V
3 df-fac 12923 . . 3 ! = ({⟨0, 1⟩} ∪ seq1( · , I ))
4 nnuz 11599 . . . . . . 7 ℕ = (ℤ‘1)
5 dfn2 11182 . . . . . . 7 ℕ = (ℕ0 ∖ {0})
64, 5eqtr3i 2634 . . . . . 6 (ℤ‘1) = (ℕ0 ∖ {0})
76reseq2i 5314 . . . . 5 (seq1( · , I ) ↾ (ℤ‘1)) = (seq1( · , I ) ↾ (ℕ0 ∖ {0}))
8 1z 11284 . . . . . 6 1 ∈ ℤ
9 seqfn 12675 . . . . . 6 (1 ∈ ℤ → seq1( · , I ) Fn (ℤ‘1))
10 fnresdm 5914 . . . . . 6 (seq1( · , I ) Fn (ℤ‘1) → (seq1( · , I ) ↾ (ℤ‘1)) = seq1( · , I ))
118, 9, 10mp2b 10 . . . . 5 (seq1( · , I ) ↾ (ℤ‘1)) = seq1( · , I )
127, 11eqtr3i 2634 . . . 4 (seq1( · , I ) ↾ (ℕ0 ∖ {0})) = seq1( · , I )
1312uneq2i 3726 . . 3 ({⟨0, 1⟩} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0}))) = ({⟨0, 1⟩} ∪ seq1( · , I ))
143, 13eqtr4i 2635 . 2 ! = ({⟨0, 1⟩} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0})))
151, 2, 14fvsnun1 6353 1 (!‘0) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1475  wcel 1977  cdif 3537  cun 3538  {csn 4125  cop 4131   I cid 4948  cres 5040   Fn wfn 5799  cfv 5804  0cc0 9815  1c1 9816   · cmul 9820  cn 10897  0cn0 11169  cz 11254  cuz 11563  seqcseq 12663  !cfa 12922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-seq 12664  df-fac 12923
This theorem is referenced by:  facp1  12927  faccl  12932  facwordi  12938  faclbnd  12939  faclbnd4lem3  12944  facubnd  12949  bcn0  12959  bcval5  12967  hashf1  13098  fprodfac  14542  fallfacfac  14615  ef0lem  14648  ege2le3  14659  eft0val  14681  prmfac1  15269  pcfac  15441  tayl0  23920  logfac  24151  advlogexp  24201  facgam  24592  logexprlim  24750  subfacval2  30423  faclim  30885  bccn0  37564  mccl  38665  dvnxpaek  38832  dvnprodlem3  38838  etransclem14  39141  etransclem24  39151  etransclem25  39152  etransclem35  39162
  Copyright terms: Public domain W3C validator