MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  endisj Structured version   Visualization version   GIF version

Theorem endisj 7932
Description: Any two sets are equinumerous to disjoint sets. Exercise 4.39 of [Mendelson] p. 255. (Contributed by NM, 16-Apr-2004.)
Hypotheses
Ref Expression
endisj.1 𝐴 ∈ V
endisj.2 𝐵 ∈ V
Assertion
Ref Expression
endisj 𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝑥𝑦) = ∅)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem endisj
StepHypRef Expression
1 endisj.1 . . . 4 𝐴 ∈ V
2 0ex 4718 . . . 4 ∅ ∈ V
31, 2xpsnen 7929 . . 3 (𝐴 × {∅}) ≈ 𝐴
4 endisj.2 . . . 4 𝐵 ∈ V
5 1on 7454 . . . . 5 1𝑜 ∈ On
65elexi 3186 . . . 4 1𝑜 ∈ V
74, 6xpsnen 7929 . . 3 (𝐵 × {1𝑜}) ≈ 𝐵
83, 7pm3.2i 470 . 2 ((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1𝑜}) ≈ 𝐵)
9 xp01disj 7463 . 2 ((𝐴 × {∅}) ∩ (𝐵 × {1𝑜})) = ∅
10 p0ex 4779 . . . 4 {∅} ∈ V
111, 10xpex 6860 . . 3 (𝐴 × {∅}) ∈ V
12 snex 4835 . . . 4 {1𝑜} ∈ V
134, 12xpex 6860 . . 3 (𝐵 × {1𝑜}) ∈ V
14 breq1 4586 . . . . 5 (𝑥 = (𝐴 × {∅}) → (𝑥𝐴 ↔ (𝐴 × {∅}) ≈ 𝐴))
15 breq1 4586 . . . . 5 (𝑦 = (𝐵 × {1𝑜}) → (𝑦𝐵 ↔ (𝐵 × {1𝑜}) ≈ 𝐵))
1614, 15bi2anan9 913 . . . 4 ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1𝑜})) → ((𝑥𝐴𝑦𝐵) ↔ ((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1𝑜}) ≈ 𝐵)))
17 ineq12 3771 . . . . 5 ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1𝑜})) → (𝑥𝑦) = ((𝐴 × {∅}) ∩ (𝐵 × {1𝑜})))
1817eqeq1d 2612 . . . 4 ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1𝑜})) → ((𝑥𝑦) = ∅ ↔ ((𝐴 × {∅}) ∩ (𝐵 × {1𝑜})) = ∅))
1916, 18anbi12d 743 . . 3 ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1𝑜})) → (((𝑥𝐴𝑦𝐵) ∧ (𝑥𝑦) = ∅) ↔ (((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1𝑜}) ≈ 𝐵) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1𝑜})) = ∅)))
2011, 13, 19spc2ev 3274 . 2 ((((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1𝑜}) ≈ 𝐵) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1𝑜})) = ∅) → ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝑥𝑦) = ∅))
218, 9, 20mp2an 704 1 𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝑥𝑦) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1475  wex 1695  wcel 1977  Vcvv 3173  cin 3539  c0 3874  {csn 4125   class class class wbr 4583   × cxp 5036  Oncon0 5640  1𝑜c1o 7440  cen 7838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-ord 5643  df-on 5644  df-suc 5646  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-1o 7447  df-en 7842
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator