MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmpt2cl Structured version   Visualization version   GIF version

Theorem elmpt2cl 6774
Description: If a two-parameter class is not empty, constrain the implicit pair. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Hypothesis
Ref Expression
elmpt2cl.f 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
elmpt2cl (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆𝐴𝑇𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem elmpt2cl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elmpt2cl.f . . . . . 6 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
2 df-mpt2 6554 . . . . . 6 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
31, 2eqtri 2632 . . . . 5 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
43dmeqi 5247 . . . 4 dom 𝐹 = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
5 dmoprabss 6640 . . . 4 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)} ⊆ (𝐴 × 𝐵)
64, 5eqsstri 3598 . . 3 dom 𝐹 ⊆ (𝐴 × 𝐵)
7 elfvdm 6130 . . . 4 (𝑋 ∈ (𝐹‘⟨𝑆, 𝑇⟩) → ⟨𝑆, 𝑇⟩ ∈ dom 𝐹)
8 df-ov 6552 . . . 4 (𝑆𝐹𝑇) = (𝐹‘⟨𝑆, 𝑇⟩)
97, 8eleq2s 2706 . . 3 (𝑋 ∈ (𝑆𝐹𝑇) → ⟨𝑆, 𝑇⟩ ∈ dom 𝐹)
106, 9sseldi 3566 . 2 (𝑋 ∈ (𝑆𝐹𝑇) → ⟨𝑆, 𝑇⟩ ∈ (𝐴 × 𝐵))
11 opelxp 5070 . 2 (⟨𝑆, 𝑇⟩ ∈ (𝐴 × 𝐵) ↔ (𝑆𝐴𝑇𝐵))
1210, 11sylib 207 1 (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆𝐴𝑇𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cop 4131   × cxp 5036  dom cdm 5038  cfv 5804  (class class class)co 6549  {coprab 6550  cmpt2 6551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-xp 5044  df-dm 5048  df-iota 5768  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554
This theorem is referenced by:  elmpt2cl1  6775  elmpt2cl2  6776  elovmpt2  6777  elovmpt2rab  6778  elovmpt2rab1  6779  el2mpt2csbcl  7137  ixxssixx  12060  funcrcl  16346  natrcl  16433  ismhm  17160  isghm  17483  isga  17547  isslw  17846  isrhm  18544  rimrcl  18547  islmhm  18848  iscn2  20852  elflim2  21578  isfcls  21623  isnmhm  22360  limcrcl  23444  clwlkswlks  26286  clwwlkprop  26298  iscvm  30495  mclsrcl  30712  ewlkprop  40805  wwlknbp  41044  wspthnp  41048  wwlks2onv  41158  clwwlknbp0  41192  mgmhmrcl  41571  intop  41629  rnghmrcl  41679  rngimrcl  41687
  Copyright terms: Public domain W3C validator