MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efcvx Structured version   Visualization version   GIF version

Theorem efcvx 24007
Description: The exponential function on the reals is a strictly convex function. (Contributed by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
efcvx (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (exp‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < ((𝑇 · (exp‘𝐴)) + ((1 − 𝑇) · (exp‘𝐵))))

Proof of Theorem efcvx
StepHypRef Expression
1 simpl1 1057 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈ ℝ)
2 simpl2 1058 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈ ℝ)
3 simpl3 1059 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 < 𝐵)
4 reeff1o 24005 . . . . . . 7 (exp ↾ ℝ):ℝ–1-1-onto→ℝ+
5 f1of 6050 . . . . . . 7 ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+)
64, 5ax-mp 5 . . . . . 6 (exp ↾ ℝ):ℝ⟶ℝ+
7 rpssre 11719 . . . . . 6 + ⊆ ℝ
8 fss 5969 . . . . . 6 (((exp ↾ ℝ):ℝ⟶ℝ+ ∧ ℝ+ ⊆ ℝ) → (exp ↾ ℝ):ℝ⟶ℝ)
96, 7, 8mp2an 704 . . . . 5 (exp ↾ ℝ):ℝ⟶ℝ
10 iccssre 12126 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
111, 2, 10syl2anc 691 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝐴[,]𝐵) ⊆ ℝ)
12 fssres2 5985 . . . . 5 (((exp ↾ ℝ):ℝ⟶ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ) → (exp ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
139, 11, 12sylancr 694 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (exp ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
14 ax-resscn 9872 . . . . 5 ℝ ⊆ ℂ
1511, 14syl6ss 3580 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝐴[,]𝐵) ⊆ ℂ)
16 efcn 24001 . . . . . 6 exp ∈ (ℂ–cn→ℂ)
17 rescncf 22508 . . . . . 6 ((𝐴[,]𝐵) ⊆ ℂ → (exp ∈ (ℂ–cn→ℂ) → (exp ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
1815, 16, 17mpisyl 21 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (exp ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
19 cncffvrn 22509 . . . . 5 ((ℝ ⊆ ℂ ∧ (exp ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((exp ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ (exp ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ))
2014, 18, 19sylancr 694 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((exp ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ (exp ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ))
2113, 20mpbird 246 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (exp ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
22 reefiso 24006 . . . . . 6 (exp ↾ ℝ) Isom < , < (ℝ, ℝ+)
2322a1i 11 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (exp ↾ ℝ) Isom < , < (ℝ, ℝ+))
24 ioossre 12106 . . . . . 6 (𝐴(,)𝐵) ⊆ ℝ
2524a1i 11 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝐴(,)𝐵) ⊆ ℝ)
26 eqidd 2611 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((exp ↾ ℝ) “ (𝐴(,)𝐵)) = ((exp ↾ ℝ) “ (𝐴(,)𝐵)))
27 isores3 6485 . . . . 5 (((exp ↾ ℝ) Isom < , < (ℝ, ℝ+) ∧ (𝐴(,)𝐵) ⊆ ℝ ∧ ((exp ↾ ℝ) “ (𝐴(,)𝐵)) = ((exp ↾ ℝ) “ (𝐴(,)𝐵))) → ((exp ↾ ℝ) ↾ (𝐴(,)𝐵)) Isom < , < ((𝐴(,)𝐵), ((exp ↾ ℝ) “ (𝐴(,)𝐵))))
2823, 25, 26, 27syl3anc 1318 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((exp ↾ ℝ) ↾ (𝐴(,)𝐵)) Isom < , < ((𝐴(,)𝐵), ((exp ↾ ℝ) “ (𝐴(,)𝐵))))
29 ssid 3587 . . . . . . 7 ℝ ⊆ ℝ
30 fss 5969 . . . . . . . . 9 (((exp ↾ ℝ):ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → (exp ↾ ℝ):ℝ⟶ℂ)
319, 14, 30mp2an 704 . . . . . . . 8 (exp ↾ ℝ):ℝ⟶ℂ
32 eqid 2610 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
3332tgioo2 22414 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3432, 33dvres 23481 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ (exp ↾ ℝ):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ)) → (ℝ D ((exp ↾ ℝ) ↾ (𝐴[,]𝐵))) = ((ℝ D (exp ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
3514, 31, 34mpanl12 714 . . . . . . 7 ((ℝ ⊆ ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ) → (ℝ D ((exp ↾ ℝ) ↾ (𝐴[,]𝐵))) = ((ℝ D (exp ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
3629, 11, 35sylancr 694 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D ((exp ↾ ℝ) ↾ (𝐴[,]𝐵))) = ((ℝ D (exp ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
3711resabs1d 5348 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((exp ↾ ℝ) ↾ (𝐴[,]𝐵)) = (exp ↾ (𝐴[,]𝐵)))
3837oveq2d 6565 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D ((exp ↾ ℝ) ↾ (𝐴[,]𝐵))) = (ℝ D (exp ↾ (𝐴[,]𝐵))))
39 reelprrecn 9907 . . . . . . . . . 10 ℝ ∈ {ℝ, ℂ}
40 eff 14651 . . . . . . . . . 10 exp:ℂ⟶ℂ
41 ssid 3587 . . . . . . . . . 10 ℂ ⊆ ℂ
42 dvef 23547 . . . . . . . . . . . . 13 (ℂ D exp) = exp
4342dmeqi 5247 . . . . . . . . . . . 12 dom (ℂ D exp) = dom exp
4440fdmi 5965 . . . . . . . . . . . 12 dom exp = ℂ
4543, 44eqtri 2632 . . . . . . . . . . 11 dom (ℂ D exp) = ℂ
4614, 45sseqtr4i 3601 . . . . . . . . . 10 ℝ ⊆ dom (ℂ D exp)
47 dvres3 23483 . . . . . . . . . 10 (((ℝ ∈ {ℝ, ℂ} ∧ exp:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D exp))) → (ℝ D (exp ↾ ℝ)) = ((ℂ D exp) ↾ ℝ))
4839, 40, 41, 46, 47mp4an 705 . . . . . . . . 9 (ℝ D (exp ↾ ℝ)) = ((ℂ D exp) ↾ ℝ)
4942reseq1i 5313 . . . . . . . . 9 ((ℂ D exp) ↾ ℝ) = (exp ↾ ℝ)
5048, 49eqtri 2632 . . . . . . . 8 (ℝ D (exp ↾ ℝ)) = (exp ↾ ℝ)
5150a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (exp ↾ ℝ)) = (exp ↾ ℝ))
52 iccntr 22432 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
531, 2, 52syl2anc 691 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
5451, 53reseq12d 5318 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((ℝ D (exp ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) = ((exp ↾ ℝ) ↾ (𝐴(,)𝐵)))
5536, 38, 543eqtr3d 2652 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (exp ↾ (𝐴[,]𝐵))) = ((exp ↾ ℝ) ↾ (𝐴(,)𝐵)))
56 isoeq1 6467 . . . . 5 ((ℝ D (exp ↾ (𝐴[,]𝐵))) = ((exp ↾ ℝ) ↾ (𝐴(,)𝐵)) → ((ℝ D (exp ↾ (𝐴[,]𝐵))) Isom < , < ((𝐴(,)𝐵), ((exp ↾ ℝ) “ (𝐴(,)𝐵))) ↔ ((exp ↾ ℝ) ↾ (𝐴(,)𝐵)) Isom < , < ((𝐴(,)𝐵), ((exp ↾ ℝ) “ (𝐴(,)𝐵)))))
5755, 56syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((ℝ D (exp ↾ (𝐴[,]𝐵))) Isom < , < ((𝐴(,)𝐵), ((exp ↾ ℝ) “ (𝐴(,)𝐵))) ↔ ((exp ↾ ℝ) ↾ (𝐴(,)𝐵)) Isom < , < ((𝐴(,)𝐵), ((exp ↾ ℝ) “ (𝐴(,)𝐵)))))
5828, 57mpbird 246 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (exp ↾ (𝐴[,]𝐵))) Isom < , < ((𝐴(,)𝐵), ((exp ↾ ℝ) “ (𝐴(,)𝐵))))
59 simpr 476 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈ (0(,)1))
60 eqid 2610 . . 3 ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))
611, 2, 3, 21, 58, 59, 60dvcvx 23587 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((exp ↾ (𝐴[,]𝐵))‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < ((𝑇 · ((exp ↾ (𝐴[,]𝐵))‘𝐴)) + ((1 − 𝑇) · ((exp ↾ (𝐴[,]𝐵))‘𝐵))))
62 ax-1cn 9873 . . . . . . 7 1 ∈ ℂ
63 ioossre 12106 . . . . . . . . 9 (0(,)1) ⊆ ℝ
6463, 59sseldi 3566 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈ ℝ)
6564recnd 9947 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈ ℂ)
66 nncan 10189 . . . . . . 7 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − (1 − 𝑇)) = 𝑇)
6762, 65, 66sylancr 694 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1 − (1 − 𝑇)) = 𝑇)
6867oveq1d 6564 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − (1 − 𝑇)) · 𝐴) = (𝑇 · 𝐴))
6968oveq1d 6564 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (((1 − (1 − 𝑇)) · 𝐴) + ((1 − 𝑇) · 𝐵)) = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)))
70 ioossicc 12130 . . . . . . 7 (0(,)1) ⊆ (0[,]1)
7170, 59sseldi 3566 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈ (0[,]1))
72 iirev 22536 . . . . . 6 (𝑇 ∈ (0[,]1) → (1 − 𝑇) ∈ (0[,]1))
7371, 72syl 17 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1 − 𝑇) ∈ (0[,]1))
74 lincmb01cmp 12186 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (1 − 𝑇) ∈ (0[,]1)) → (((1 − (1 − 𝑇)) · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵))
7573, 74syldan 486 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (((1 − (1 − 𝑇)) · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵))
7669, 75eqeltrrd 2689 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵))
77 fvres 6117 . . 3 (((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵) → ((exp ↾ (𝐴[,]𝐵))‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) = (exp‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
7876, 77syl 17 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((exp ↾ (𝐴[,]𝐵))‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) = (exp‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
791rexrd 9968 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈ ℝ*)
802rexrd 9968 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈ ℝ*)
811, 2, 3ltled 10064 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴𝐵)
82 lbicc2 12159 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
8379, 80, 81, 82syl3anc 1318 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈ (𝐴[,]𝐵))
84 fvres 6117 . . . . 5 (𝐴 ∈ (𝐴[,]𝐵) → ((exp ↾ (𝐴[,]𝐵))‘𝐴) = (exp‘𝐴))
8583, 84syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((exp ↾ (𝐴[,]𝐵))‘𝐴) = (exp‘𝐴))
8685oveq2d 6565 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · ((exp ↾ (𝐴[,]𝐵))‘𝐴)) = (𝑇 · (exp‘𝐴)))
87 ubicc2 12160 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
8879, 80, 81, 87syl3anc 1318 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈ (𝐴[,]𝐵))
89 fvres 6117 . . . . 5 (𝐵 ∈ (𝐴[,]𝐵) → ((exp ↾ (𝐴[,]𝐵))‘𝐵) = (exp‘𝐵))
9088, 89syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((exp ↾ (𝐴[,]𝐵))‘𝐵) = (exp‘𝐵))
9190oveq2d 6565 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − 𝑇) · ((exp ↾ (𝐴[,]𝐵))‘𝐵)) = ((1 − 𝑇) · (exp‘𝐵)))
9286, 91oveq12d 6567 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · ((exp ↾ (𝐴[,]𝐵))‘𝐴)) + ((1 − 𝑇) · ((exp ↾ (𝐴[,]𝐵))‘𝐵))) = ((𝑇 · (exp‘𝐴)) + ((1 − 𝑇) · (exp‘𝐵))))
9361, 78, 923brtr3d 4614 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (exp‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < ((𝑇 · (exp‘𝐴)) + ((1 − 𝑇) · (exp‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wss 3540  {cpr 4127   class class class wbr 4583  dom cdm 5038  ran crn 5039  cres 5040  cima 5041  wf 5800  1-1-ontowf1o 5803  cfv 5804   Isom wiso 5805  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  *cxr 9952   < clt 9953  cle 9954  cmin 10145  +crp 11708  (,)cioo 12046  [,]cicc 12049  expce 14631  TopOpenctopn 15905  topGenctg 15921  fldccnfld 19567  intcnt 20631  cnccncf 22487   D cdv 23433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator