MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvnfre Structured version   Visualization version   GIF version

Theorem dvnfre 23521
Description: The 𝑁-th derivative of a real function is real. (Contributed by Mario Carneiro, 1-Jan-2017.)
Assertion
Ref Expression
dvnfre ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑁 ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ)

Proof of Theorem dvnfre
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6103 . . . . . 6 (𝑥 = 0 → ((ℝ D𝑛 𝐹)‘𝑥) = ((ℝ D𝑛 𝐹)‘0))
21dmeqd 5248 . . . . . 6 (𝑥 = 0 → dom ((ℝ D𝑛 𝐹)‘𝑥) = dom ((ℝ D𝑛 𝐹)‘0))
31, 2feq12d 5946 . . . . 5 (𝑥 = 0 → (((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ ↔ ((ℝ D𝑛 𝐹)‘0):dom ((ℝ D𝑛 𝐹)‘0)⟶ℝ))
43imbi2d 329 . . . 4 (𝑥 = 0 → (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ) ↔ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘0):dom ((ℝ D𝑛 𝐹)‘0)⟶ℝ)))
5 fveq2 6103 . . . . . 6 (𝑥 = 𝑛 → ((ℝ D𝑛 𝐹)‘𝑥) = ((ℝ D𝑛 𝐹)‘𝑛))
65dmeqd 5248 . . . . . 6 (𝑥 = 𝑛 → dom ((ℝ D𝑛 𝐹)‘𝑥) = dom ((ℝ D𝑛 𝐹)‘𝑛))
75, 6feq12d 5946 . . . . 5 (𝑥 = 𝑛 → (((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ ↔ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ))
87imbi2d 329 . . . 4 (𝑥 = 𝑛 → (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ) ↔ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)))
9 fveq2 6103 . . . . . 6 (𝑥 = (𝑛 + 1) → ((ℝ D𝑛 𝐹)‘𝑥) = ((ℝ D𝑛 𝐹)‘(𝑛 + 1)))
109dmeqd 5248 . . . . . 6 (𝑥 = (𝑛 + 1) → dom ((ℝ D𝑛 𝐹)‘𝑥) = dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1)))
119, 10feq12d 5946 . . . . 5 (𝑥 = (𝑛 + 1) → (((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ ↔ ((ℝ D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))⟶ℝ))
1211imbi2d 329 . . . 4 (𝑥 = (𝑛 + 1) → (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ) ↔ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))⟶ℝ)))
13 fveq2 6103 . . . . . 6 (𝑥 = 𝑁 → ((ℝ D𝑛 𝐹)‘𝑥) = ((ℝ D𝑛 𝐹)‘𝑁))
1413dmeqd 5248 . . . . . 6 (𝑥 = 𝑁 → dom ((ℝ D𝑛 𝐹)‘𝑥) = dom ((ℝ D𝑛 𝐹)‘𝑁))
1513, 14feq12d 5946 . . . . 5 (𝑥 = 𝑁 → (((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ ↔ ((ℝ D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ))
1615imbi2d 329 . . . 4 (𝑥 = 𝑁 → (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ) ↔ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ)))
17 simpl 472 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐹:𝐴⟶ℝ)
18 ax-resscn 9872 . . . . . . 7 ℝ ⊆ ℂ
19 fss 5969 . . . . . . . . 9 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
2018, 19mpan2 703 . . . . . . . 8 (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℂ)
21 cnex 9896 . . . . . . . . 9 ℂ ∈ V
22 reex 9906 . . . . . . . . 9 ℝ ∈ V
23 elpm2r 7761 . . . . . . . . 9 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm ℝ))
2421, 22, 23mpanl12 714 . . . . . . . 8 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ))
2520, 24sylan 487 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ))
26 dvn0 23493 . . . . . . 7 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℝ)) → ((ℝ D𝑛 𝐹)‘0) = 𝐹)
2718, 25, 26sylancr 694 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘0) = 𝐹)
2827dmeqd 5248 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → dom ((ℝ D𝑛 𝐹)‘0) = dom 𝐹)
29 fdm 5964 . . . . . . . 8 (𝐹:𝐴⟶ℝ → dom 𝐹 = 𝐴)
3029adantr 480 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → dom 𝐹 = 𝐴)
3128, 30eqtrd 2644 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → dom ((ℝ D𝑛 𝐹)‘0) = 𝐴)
3227, 31feq12d 5946 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (((ℝ D𝑛 𝐹)‘0):dom ((ℝ D𝑛 𝐹)‘0)⟶ℝ ↔ 𝐹:𝐴⟶ℝ))
3317, 32mpbird 246 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘0):dom ((ℝ D𝑛 𝐹)‘0)⟶ℝ)
34 simprr 792 . . . . . . . . 9 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)
3522prid1 4241 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
3635a1i 11 . . . . . . . . . . . 12 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → ℝ ∈ {ℝ, ℂ})
3725adantr 480 . . . . . . . . . . . 12 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → 𝐹 ∈ (ℂ ↑pm ℝ))
38 simprl 790 . . . . . . . . . . . 12 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → 𝑛 ∈ ℕ0)
39 dvnbss 23497 . . . . . . . . . . . 12 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝑛 ∈ ℕ0) → dom ((ℝ D𝑛 𝐹)‘𝑛) ⊆ dom 𝐹)
4036, 37, 38, 39syl3anc 1318 . . . . . . . . . . 11 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → dom ((ℝ D𝑛 𝐹)‘𝑛) ⊆ dom 𝐹)
4130adantr 480 . . . . . . . . . . 11 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → dom 𝐹 = 𝐴)
4240, 41sseqtrd 3604 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → dom ((ℝ D𝑛 𝐹)‘𝑛) ⊆ 𝐴)
43 simplr 788 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → 𝐴 ⊆ ℝ)
4442, 43sstrd 3578 . . . . . . . . 9 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → dom ((ℝ D𝑛 𝐹)‘𝑛) ⊆ ℝ)
45 dvfre 23520 . . . . . . . . 9 ((((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ ∧ dom ((ℝ D𝑛 𝐹)‘𝑛) ⊆ ℝ) → (ℝ D ((ℝ D𝑛 𝐹)‘𝑛)):dom (ℝ D ((ℝ D𝑛 𝐹)‘𝑛))⟶ℝ)
4634, 44, 45syl2anc 691 . . . . . . . 8 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → (ℝ D ((ℝ D𝑛 𝐹)‘𝑛)):dom (ℝ D ((ℝ D𝑛 𝐹)‘𝑛))⟶ℝ)
4718a1i 11 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → ℝ ⊆ ℂ)
48 dvnp1 23494 . . . . . . . . . 10 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝑛 ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘(𝑛 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘𝑛)))
4947, 37, 38, 48syl3anc 1318 . . . . . . . . 9 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → ((ℝ D𝑛 𝐹)‘(𝑛 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘𝑛)))
5049dmeqd 5248 . . . . . . . . 9 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1)) = dom (ℝ D ((ℝ D𝑛 𝐹)‘𝑛)))
5149, 50feq12d 5946 . . . . . . . 8 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → (((ℝ D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))⟶ℝ ↔ (ℝ D ((ℝ D𝑛 𝐹)‘𝑛)):dom (ℝ D ((ℝ D𝑛 𝐹)‘𝑛))⟶ℝ))
5246, 51mpbird 246 . . . . . . 7 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → ((ℝ D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))⟶ℝ)
5352expr 641 . . . . . 6 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑛 ∈ ℕ0) → (((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ → ((ℝ D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))⟶ℝ))
5453expcom 450 . . . . 5 (𝑛 ∈ ℕ0 → ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ → ((ℝ D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))⟶ℝ)))
5554a2d 29 . . . 4 (𝑛 ∈ ℕ0 → (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ) → ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))⟶ℝ)))
564, 8, 12, 16, 33, 55nn0ind 11348 . . 3 (𝑁 ∈ ℕ0 → ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ))
5756com12 32 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (𝑁 ∈ ℕ0 → ((ℝ D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ))
58573impia 1253 1 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑁 ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  wss 3540  {cpr 4127  dom cdm 5038  wf 5800  cfv 5804  (class class class)co 6549  pm cpm 7745  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  0cn0 11169   D cdv 23433   D𝑛 cdvn 23434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-icc 12053  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-rest 15906  df-topn 15907  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-cncf 22489  df-limc 23436  df-dv 23437  df-dvn 23438
This theorem is referenced by:  taylthlem2  23932
  Copyright terms: Public domain W3C validator