Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopN Structured version   Visualization version   GIF version

Theorem dvhopN 35423
Description: Decompose a DVecH vector expressed as an ordered pair into the sum of two components, the first from the translation group vector base of DVecA and the other from the one-dimensional vector subspace 𝐸. Part of Lemma M of [Crawley] p. 121, line 18. We represent their e, sigma, f by ⟨( I ↾ 𝐵), ( I ↾ 𝑇)⟩, 𝑈, 𝐹, 𝑂. We swapped the order of vector sum (their juxtaposition i.e. composition) to show 𝐹, 𝑂 first. Note that 𝑂 and ( I ↾ 𝑇) are the zero and one of the division ring 𝐸, and ( I ↾ 𝐵) is the zero of the translation group. 𝑆 is the scalar product. (Contributed by NM, 21-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvhop.b 𝐵 = (Base‘𝐾)
dvhop.h 𝐻 = (LHyp‘𝐾)
dvhop.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhop.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhop.p 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑐𝑇 ↦ ((𝑎𝑐) ∘ (𝑏𝑐))))
dvhop.a 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓)𝑃(2nd𝑔))⟩)
dvhop.s 𝑆 = (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
dvhop.o 𝑂 = (𝑐𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
dvhopN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → ⟨𝐹, 𝑈⟩ = (⟨𝐹, 𝑂𝐴(𝑈𝑆⟨( I ↾ 𝐵), ( I ↾ 𝑇)⟩)))
Distinct variable groups:   𝐵,𝑐   𝑎,𝑏,𝑓,𝑔,𝑠,𝐸   𝐻,𝑐   𝐾,𝑐   𝑃,𝑓,𝑔   𝑎,𝑐,𝑇,𝑏,𝑓,𝑔,𝑠   𝑊,𝑎,𝑏,𝑐
Allowed substitution hints:   𝐴(𝑓,𝑔,𝑠,𝑎,𝑏,𝑐)   𝐵(𝑓,𝑔,𝑠,𝑎,𝑏)   𝑃(𝑠,𝑎,𝑏,𝑐)   𝑆(𝑓,𝑔,𝑠,𝑎,𝑏,𝑐)   𝑈(𝑓,𝑔,𝑠,𝑎,𝑏,𝑐)   𝐸(𝑐)   𝐹(𝑓,𝑔,𝑠,𝑎,𝑏,𝑐)   𝐻(𝑓,𝑔,𝑠,𝑎,𝑏)   𝐾(𝑓,𝑔,𝑠,𝑎,𝑏)   𝑂(𝑓,𝑔,𝑠,𝑎,𝑏,𝑐)   𝑊(𝑓,𝑔,𝑠)

Proof of Theorem dvhopN
StepHypRef Expression
1 simprr 792 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → 𝑈𝐸)
2 dvhop.b . . . . . . 7 𝐵 = (Base‘𝐾)
3 dvhop.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
4 dvhop.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4idltrn 34454 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝑇)
65adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → ( I ↾ 𝐵) ∈ 𝑇)
7 dvhop.e . . . . . . 7 𝐸 = ((TEndo‘𝐾)‘𝑊)
83, 4, 7tendoidcl 35075 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)
98adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → ( I ↾ 𝑇) ∈ 𝐸)
10 dvhop.s . . . . . 6 𝑆 = (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
1110dvhopspN 35422 . . . . 5 ((𝑈𝐸 ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ ( I ↾ 𝑇) ∈ 𝐸)) → (𝑈𝑆⟨( I ↾ 𝐵), ( I ↾ 𝑇)⟩) = ⟨(𝑈‘( I ↾ 𝐵)), (𝑈 ∘ ( I ↾ 𝑇))⟩)
121, 6, 9, 11syl12anc 1316 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (𝑈𝑆⟨( I ↾ 𝐵), ( I ↾ 𝑇)⟩) = ⟨(𝑈‘( I ↾ 𝐵)), (𝑈 ∘ ( I ↾ 𝑇))⟩)
132, 3, 7tendoid 35079 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
1413adantrl 748 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
153, 4, 7tendo1mulr 35077 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑈 ∘ ( I ↾ 𝑇)) = 𝑈)
1615adantrl 748 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (𝑈 ∘ ( I ↾ 𝑇)) = 𝑈)
1714, 16opeq12d 4348 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → ⟨(𝑈‘( I ↾ 𝐵)), (𝑈 ∘ ( I ↾ 𝑇))⟩ = ⟨( I ↾ 𝐵), 𝑈⟩)
1812, 17eqtrd 2644 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (𝑈𝑆⟨( I ↾ 𝐵), ( I ↾ 𝑇)⟩) = ⟨( I ↾ 𝐵), 𝑈⟩)
1918oveq2d 6565 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (⟨𝐹, 𝑂𝐴(𝑈𝑆⟨( I ↾ 𝐵), ( I ↾ 𝑇)⟩)) = (⟨𝐹, 𝑂𝐴⟨( I ↾ 𝐵), 𝑈⟩))
20 simprl 790 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → 𝐹𝑇)
21 dvhop.o . . . . 5 𝑂 = (𝑐𝑇 ↦ ( I ↾ 𝐵))
222, 3, 4, 7, 21tendo0cl 35096 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
2322adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → 𝑂𝐸)
24 dvhop.a . . . 4 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓)𝑃(2nd𝑔))⟩)
2524dvhopaddN 35421 . . 3 (((𝐹𝑇𝑂𝐸) ∧ (( I ↾ 𝐵) ∈ 𝑇𝑈𝐸)) → (⟨𝐹, 𝑂𝐴⟨( I ↾ 𝐵), 𝑈⟩) = ⟨(𝐹 ∘ ( I ↾ 𝐵)), (𝑂𝑃𝑈)⟩)
2620, 23, 6, 1, 25syl22anc 1319 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (⟨𝐹, 𝑂𝐴⟨( I ↾ 𝐵), 𝑈⟩) = ⟨(𝐹 ∘ ( I ↾ 𝐵)), (𝑂𝑃𝑈)⟩)
272, 3, 4ltrn1o 34428 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
2827adantrr 749 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → 𝐹:𝐵1-1-onto𝐵)
29 f1of 6050 . . . 4 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵𝐵)
30 fcoi1 5991 . . . 4 (𝐹:𝐵𝐵 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
3128, 29, 303syl 18 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
32 dvhop.p . . . . 5 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑐𝑇 ↦ ((𝑎𝑐) ∘ (𝑏𝑐))))
332, 3, 4, 7, 21, 32tendo0pl 35097 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑂𝑃𝑈) = 𝑈)
3433adantrl 748 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (𝑂𝑃𝑈) = 𝑈)
3531, 34opeq12d 4348 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → ⟨(𝐹 ∘ ( I ↾ 𝐵)), (𝑂𝑃𝑈)⟩ = ⟨𝐹, 𝑈⟩)
3619, 26, 353eqtrrd 2649 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → ⟨𝐹, 𝑈⟩ = (⟨𝐹, 𝑂𝐴(𝑈𝑆⟨( I ↾ 𝐵), ( I ↾ 𝑇)⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cop 4131  cmpt 4643   I cid 4948   × cxp 5036  cres 5040  ccom 5042  wf 5800  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  cmpt2 6551  1st c1st 7057  2nd c2nd 7058  Basecbs 15695  HLchlt 33655  LHypclh 34288  LTrncltrn 34405  TEndoctendo 35058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-riotaBAD 33257
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-undef 7286  df-map 7746  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464  df-tendo 35061
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator