MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domsdomtr Structured version   Visualization version   GIF version

Theorem domsdomtr 7980
Description: Transitivity of dominance and strict dominance. Theorem 22(ii) of [Suppes] p. 97. (Contributed by NM, 10-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
domsdomtr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem domsdomtr
StepHypRef Expression
1 sdomdom 7869 . . 3 (𝐵𝐶𝐵𝐶)
2 domtr 7895 . . 3 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
31, 2sylan2 490 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
4 simpr 476 . . 3 ((𝐴𝐵𝐵𝐶) → 𝐵𝐶)
5 ensym 7891 . . . . . 6 (𝐴𝐶𝐶𝐴)
6 simpl 472 . . . . . 6 ((𝐴𝐵𝐵𝐶) → 𝐴𝐵)
7 endomtr 7900 . . . . . 6 ((𝐶𝐴𝐴𝐵) → 𝐶𝐵)
85, 6, 7syl2anr 494 . . . . 5 (((𝐴𝐵𝐵𝐶) ∧ 𝐴𝐶) → 𝐶𝐵)
9 domnsym 7971 . . . . 5 (𝐶𝐵 → ¬ 𝐵𝐶)
108, 9syl 17 . . . 4 (((𝐴𝐵𝐵𝐶) ∧ 𝐴𝐶) → ¬ 𝐵𝐶)
1110ex 449 . . 3 ((𝐴𝐵𝐵𝐶) → (𝐴𝐶 → ¬ 𝐵𝐶))
124, 11mt2d 130 . 2 ((𝐴𝐵𝐵𝐶) → ¬ 𝐴𝐶)
13 brsdom 7864 . 2 (𝐴𝐶 ↔ (𝐴𝐶 ∧ ¬ 𝐴𝐶))
143, 12, 13sylanbrc 695 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   class class class wbr 4583  cen 7838  cdom 7839  csdm 7840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844
This theorem is referenced by:  ensdomtr  7981  sdomtr  7983  2pwuninel  8000  card2on  8342  tskwe  8659  harval2  8706  prdom2  8712  infxpenlem  8719  alephsucdom  8785  pwsdompw  8909  infunsdom1  8918  fin34  9095  ondomon  9264  cardmin  9265  konigthlem  9269  gchpwdom  9371  gchina  9400  inar1  9476  tskord  9481  tskuni  9484  tskurn  9490  csdfil  21508
  Copyright terms: Public domain W3C validator