Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diophrex Structured version   Visualization version   GIF version

Theorem diophrex 36357
Description: Projecting a Diophantine set by removing a coordinate results in a Diophantine set. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
diophrex ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) → {𝑡 ∣ ∃𝑢𝑆 𝑡 = (𝑢 ↾ (1...𝑁))} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑡,𝑁,𝑢   𝑡,𝑆,𝑢
Allowed substitution hints:   𝑀(𝑢,𝑡)

Proof of Theorem diophrex
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2614 . . . . 5 (𝑎 = 𝑡 → (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑡 = (𝑏 ↾ (1...𝑁))))
21rexbidv 3034 . . . 4 (𝑎 = 𝑡 → (∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑏𝑆 𝑡 = (𝑏 ↾ (1...𝑁))))
3 reseq1 5311 . . . . . 6 (𝑏 = 𝑢 → (𝑏 ↾ (1...𝑁)) = (𝑢 ↾ (1...𝑁)))
43eqeq2d 2620 . . . . 5 (𝑏 = 𝑢 → (𝑡 = (𝑏 ↾ (1...𝑁)) ↔ 𝑡 = (𝑢 ↾ (1...𝑁))))
54cbvrexv 3148 . . . 4 (∃𝑏𝑆 𝑡 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑢𝑆 𝑡 = (𝑢 ↾ (1...𝑁)))
62, 5syl6bb 275 . . 3 (𝑎 = 𝑡 → (∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑢𝑆 𝑡 = (𝑢 ↾ (1...𝑁))))
76cbvabv 2734 . 2 {𝑎 ∣ ∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁))} = {𝑡 ∣ ∃𝑢𝑆 𝑡 = (𝑢 ↾ (1...𝑁))}
8 rexeq 3116 . . . . . 6 (𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)} → (∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))))
98abbidv 2728 . . . . 5 (𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)} → {𝑎 ∣ ∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁))} = {𝑎 ∣ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))})
109adantl 481 . . . 4 ((((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) ∧ 𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}) → {𝑎 ∣ ∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁))} = {𝑎 ∣ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))})
11 eqeq1 2614 . . . . . . . . . . 11 (𝑑 = 𝑏 → (𝑑 = (𝑒 ↾ (1...𝑀)) ↔ 𝑏 = (𝑒 ↾ (1...𝑀))))
1211anbi1d 737 . . . . . . . . . 10 (𝑑 = 𝑏 → ((𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ↔ (𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)))
1312rexbidv 3034 . . . . . . . . 9 (𝑑 = 𝑏 → (∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ↔ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)))
1413rexab 3336 . . . . . . . 8 (∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑏(∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))))
15 r19.41v 3070 . . . . . . . . . 10 (∃𝑒 ∈ (ℕ0𝑚 ℕ)((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ (∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))))
1615exbii 1764 . . . . . . . . 9 (∃𝑏𝑒 ∈ (ℕ0𝑚 ℕ)((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑏(∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))))
17 rexcom4 3198 . . . . . . . . . 10 (∃𝑒 ∈ (ℕ0𝑚 ℕ)∃𝑏((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑏𝑒 ∈ (ℕ0𝑚 ℕ)((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))))
18 anass 679 . . . . . . . . . . . . . 14 (((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ (𝑏 = (𝑒 ↾ (1...𝑀)) ∧ ((𝑐𝑒) = 0 ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))))
1918exbii 1764 . . . . . . . . . . . . 13 (∃𝑏((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑏(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ ((𝑐𝑒) = 0 ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))))
20 vex 3176 . . . . . . . . . . . . . . 15 𝑒 ∈ V
2120resex 5363 . . . . . . . . . . . . . 14 (𝑒 ↾ (1...𝑀)) ∈ V
22 reseq1 5311 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑒 ↾ (1...𝑀)) → (𝑏 ↾ (1...𝑁)) = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)))
2322eqeq2d 2620 . . . . . . . . . . . . . . 15 (𝑏 = (𝑒 ↾ (1...𝑀)) → (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁))))
2423anbi2d 736 . . . . . . . . . . . . . 14 (𝑏 = (𝑒 ↾ (1...𝑀)) → (((𝑐𝑒) = 0 ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ((𝑐𝑒) = 0 ∧ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)))))
2521, 24ceqsexv 3215 . . . . . . . . . . . . 13 (∃𝑏(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ ((𝑐𝑒) = 0 ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))) ↔ ((𝑐𝑒) = 0 ∧ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁))))
2619, 25bitri 263 . . . . . . . . . . . 12 (∃𝑏((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ((𝑐𝑒) = 0 ∧ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁))))
27 ancom 465 . . . . . . . . . . . . 13 (((𝑐𝑒) = 0 ∧ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁))) ↔ (𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0))
28 simpl2 1058 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → 𝑀 ∈ (ℤ𝑁))
29 fzss2 12252 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (ℤ𝑁) → (1...𝑁) ⊆ (1...𝑀))
30 resabs1 5347 . . . . . . . . . . . . . . . 16 ((1...𝑁) ⊆ (1...𝑀) → ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)) = (𝑒 ↾ (1...𝑁)))
3128, 29, 303syl 18 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)) = (𝑒 ↾ (1...𝑁)))
3231eqeq2d 2620 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)) ↔ 𝑎 = (𝑒 ↾ (1...𝑁))))
3332anbi1d 737 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → ((𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0) ↔ (𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)))
3427, 33syl5bb 271 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (((𝑐𝑒) = 0 ∧ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁))) ↔ (𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)))
3526, 34syl5bb 271 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (∃𝑏((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ (𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)))
3635rexbidv 3034 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (∃𝑒 ∈ (ℕ0𝑚 ℕ)∃𝑏((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)))
3717, 36syl5bbr 273 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (∃𝑏𝑒 ∈ (ℕ0𝑚 ℕ)((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)))
3816, 37syl5bbr 273 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (∃𝑏(∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)))
3914, 38syl5bb 271 . . . . . . 7 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)))
4039abbidv 2728 . . . . . 6 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → {𝑎 ∣ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))} = {𝑎 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)})
41 eldioph3 36347 . . . . . . 7 ((𝑁 ∈ ℕ0𝑐 ∈ (mzPoly‘ℕ)) → {𝑎 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)} ∈ (Dioph‘𝑁))
42413ad2antl1 1216 . . . . . 6 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → {𝑎 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)} ∈ (Dioph‘𝑁))
4340, 42eqeltrd 2688 . . . . 5 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → {𝑎 ∣ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))} ∈ (Dioph‘𝑁))
4443adantr 480 . . . 4 ((((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) ∧ 𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}) → {𝑎 ∣ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))} ∈ (Dioph‘𝑁))
4510, 44eqeltrd 2688 . . 3 ((((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) ∧ 𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}) → {𝑎 ∣ ∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁))} ∈ (Dioph‘𝑁))
46 eldioph3b 36346 . . . . 5 (𝑆 ∈ (Dioph‘𝑀) ↔ (𝑀 ∈ ℕ0 ∧ ∃𝑐 ∈ (mzPoly‘ℕ)𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}))
4746simprbi 479 . . . 4 (𝑆 ∈ (Dioph‘𝑀) → ∃𝑐 ∈ (mzPoly‘ℕ)𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)})
48473ad2ant3 1077 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) → ∃𝑐 ∈ (mzPoly‘ℕ)𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)})
4945, 48r19.29a 3060 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) → {𝑎 ∣ ∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁))} ∈ (Dioph‘𝑁))
507, 49syl5eqelr 2693 1 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) → {𝑡 ∣ ∃𝑢𝑆 𝑡 = (𝑢 ↾ (1...𝑁))} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wrex 2897  wss 3540  cres 5040  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  0cc0 9815  1c1 9816  cn 10897  0cn0 11169  cuz 11563  ...cfz 12197  mzPolycmzp 36303  Diophcdioph 36336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-mzpcl 36304  df-mzp 36305  df-dioph 36337
This theorem is referenced by:  rexrabdioph  36376
  Copyright terms: Public domain W3C validator