Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diarnN Structured version   Visualization version   GIF version

Theorem diarnN 35436
Description: Partial isomorphism A maps onto the set of all closed subspaces of partial vector space A. Part of Lemma M of [Crawley] p. 121 line 12, with closed subspaces rather than subspaces. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvadia.h 𝐻 = (LHyp‘𝐾)
dvadia.u 𝑈 = ((DVecA‘𝐾)‘𝑊)
dvadia.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
dvadia.n = ((ocA‘𝐾)‘𝑊)
dvadia.s 𝑆 = (LSubSp‘𝑈)
Assertion
Ref Expression
diarnN ((𝐾 ∈ HL ∧ 𝑊𝐻) → ran 𝐼 = {𝑥𝑆 ∣ ( ‘( 𝑥)) = 𝑥})
Distinct variable groups:   𝑥,𝐻   𝑥,𝐼   𝑥,𝐾   𝑥,𝑆   𝑥,𝑊
Allowed substitution hints:   𝑈(𝑥)   (𝑥)

Proof of Theorem diarnN
StepHypRef Expression
1 dvadia.h . . . 4 𝐻 = (LHyp‘𝐾)
2 dvadia.u . . . 4 𝑈 = ((DVecA‘𝐾)‘𝑊)
3 dvadia.i . . . 4 𝐼 = ((DIsoA‘𝐾)‘𝑊)
4 dvadia.s . . . 4 𝑆 = (LSubSp‘𝑈)
51, 2, 3, 4diasslssN 35366 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ran 𝐼𝑆)
6 sseqin2 3779 . . 3 (ran 𝐼𝑆 ↔ (𝑆 ∩ ran 𝐼) = ran 𝐼)
75, 6sylib 207 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑆 ∩ ran 𝐼) = ran 𝐼)
8 dvadia.n . . . . . . 7 = ((ocA‘𝐾)‘𝑊)
91, 3, 8doca3N 35434 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ran 𝐼) → ( ‘( 𝑥)) = 𝑥)
109ex 449 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑥 ∈ ran 𝐼 → ( ‘( 𝑥)) = 𝑥))
1110adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑆) → (𝑥 ∈ ran 𝐼 → ( ‘( 𝑥)) = 𝑥))
121, 2, 3, 8, 4dvadiaN 35435 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑆 ∧ ( ‘( 𝑥)) = 𝑥)) → 𝑥 ∈ ran 𝐼)
1312expr 641 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑆) → (( ‘( 𝑥)) = 𝑥𝑥 ∈ ran 𝐼))
1411, 13impbid 201 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑆) → (𝑥 ∈ ran 𝐼 ↔ ( ‘( 𝑥)) = 𝑥))
1514rabbi2dva 3783 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑆 ∩ ran 𝐼) = {𝑥𝑆 ∣ ( ‘( 𝑥)) = 𝑥})
167, 15eqtr3d 2646 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ran 𝐼 = {𝑥𝑆 ∣ ( ‘( 𝑥)) = 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {crab 2900  cin 3539  wss 3540  ran crn 5039  cfv 5804  LSubSpclss 18753  HLchlt 33655  LHypclh 34288  DVecAcdveca 35308  DIsoAcdia 35335  ocAcocaN 35426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-riotaBAD 33257
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-undef 7286  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-lss 18754  df-oposet 33481  df-cmtN 33482  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464  df-tendo 35061  df-edring 35063  df-dveca 35309  df-disoa 35336  df-docaN 35427
This theorem is referenced by:  diaf1oN  35437
  Copyright terms: Public domain W3C validator