MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfom3 Structured version   Visualization version   GIF version

Theorem dfom3 8427
Description: The class of natural numbers omega can be defined as the smallest "inductive set," which is valid provided we assume the Axiom of Infinity. Definition 6.3 of [Eisenberg] p. 82. (Contributed by NM, 6-Aug-1994.)
Assertion
Ref Expression
dfom3 ω = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfom3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0ex 4718 . . . . 5 ∅ ∈ V
21elintab 4422 . . . 4 (∅ ∈ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} ↔ ∀𝑥((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → ∅ ∈ 𝑥))
3 simpl 472 . . . 4 ((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → ∅ ∈ 𝑥)
42, 3mpgbir 1717 . . 3 ∅ ∈ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
5 suceq 5707 . . . . . . . . . 10 (𝑦 = 𝑧 → suc 𝑦 = suc 𝑧)
65eleq1d 2672 . . . . . . . . 9 (𝑦 = 𝑧 → (suc 𝑦𝑥 ↔ suc 𝑧𝑥))
76rspccv 3279 . . . . . . . 8 (∀𝑦𝑥 suc 𝑦𝑥 → (𝑧𝑥 → suc 𝑧𝑥))
87adantl 481 . . . . . . 7 ((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → (𝑧𝑥 → suc 𝑧𝑥))
98a2i 14 . . . . . 6 (((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → 𝑧𝑥) → ((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → suc 𝑧𝑥))
109alimi 1730 . . . . 5 (∀𝑥((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → 𝑧𝑥) → ∀𝑥((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → suc 𝑧𝑥))
11 vex 3176 . . . . . 6 𝑧 ∈ V
1211elintab 4422 . . . . 5 (𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} ↔ ∀𝑥((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → 𝑧𝑥))
1311sucex 6903 . . . . . 6 suc 𝑧 ∈ V
1413elintab 4422 . . . . 5 (suc 𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} ↔ ∀𝑥((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → suc 𝑧𝑥))
1510, 12, 143imtr4i 280 . . . 4 (𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} → suc 𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)})
1615rgenw 2908 . . 3 𝑧 ∈ ω (𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} → suc 𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)})
17 peano5 6981 . . 3 ((∅ ∈ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} ∧ ∀𝑧 ∈ ω (𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} → suc 𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)})) → ω ⊆ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)})
184, 16, 17mp2an 704 . 2 ω ⊆ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
19 peano1 6977 . . . 4 ∅ ∈ ω
20 peano2 6978 . . . . 5 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
2120rgen 2906 . . . 4 𝑦 ∈ ω suc 𝑦 ∈ ω
22 omex 8423 . . . . . 6 ω ∈ V
23 eleq2 2677 . . . . . . . 8 (𝑥 = ω → (∅ ∈ 𝑥 ↔ ∅ ∈ ω))
24 eleq2 2677 . . . . . . . . 9 (𝑥 = ω → (suc 𝑦𝑥 ↔ suc 𝑦 ∈ ω))
2524raleqbi1dv 3123 . . . . . . . 8 (𝑥 = ω → (∀𝑦𝑥 suc 𝑦𝑥 ↔ ∀𝑦 ∈ ω suc 𝑦 ∈ ω))
2623, 25anbi12d 743 . . . . . . 7 (𝑥 = ω → ((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) ↔ (∅ ∈ ω ∧ ∀𝑦 ∈ ω suc 𝑦 ∈ ω)))
27 eleq2 2677 . . . . . . 7 (𝑥 = ω → (𝑧𝑥𝑧 ∈ ω))
2826, 27imbi12d 333 . . . . . 6 (𝑥 = ω → (((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → 𝑧𝑥) ↔ ((∅ ∈ ω ∧ ∀𝑦 ∈ ω suc 𝑦 ∈ ω) → 𝑧 ∈ ω)))
2922, 28spcv 3272 . . . . 5 (∀𝑥((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → 𝑧𝑥) → ((∅ ∈ ω ∧ ∀𝑦 ∈ ω suc 𝑦 ∈ ω) → 𝑧 ∈ ω))
3012, 29sylbi 206 . . . 4 (𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} → ((∅ ∈ ω ∧ ∀𝑦 ∈ ω suc 𝑦 ∈ ω) → 𝑧 ∈ ω))
3119, 21, 30mp2ani 710 . . 3 (𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} → 𝑧 ∈ ω)
3231ssriv 3572 . 2 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} ⊆ ω
3318, 32eqssi 3584 1 ω = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wal 1473   = wceq 1475  wcel 1977  {cab 2596  wral 2896  wss 3540  c0 3874   cint 4410  suc csuc 5642  ωcom 6957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-om 6958
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator