MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac2a Structured version   Visualization version   GIF version

Theorem dfac2a 8835
Description: Our Axiom of Choice (in the form of ac3 9167) implies the Axiom of Choice (first form) of [Enderton] p. 49. The proof uses neither AC nor the Axiom of Regularity. See dfac2 8836 for the converse (which does use the Axiom of Regularity). (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
dfac2a (∀𝑥𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) → CHOICE)
Distinct variable group:   𝑥,𝑧,𝑦,𝑤,𝑣

Proof of Theorem dfac2a
Dummy variables 𝑓 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotauni 6517 . . . . . . . . 9 (∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣) → (𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) = {𝑤𝑧 ∣ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣)})
2 riotacl 6525 . . . . . . . . 9 (∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣) → (𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) ∈ 𝑧)
31, 2eqeltrrd 2689 . . . . . . . 8 (∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣) → {𝑤𝑧 ∣ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣)} ∈ 𝑧)
4 elequ2 1991 . . . . . . . . . . . . 13 (𝑢 = 𝑧 → (𝑤𝑢𝑤𝑧))
5 elequ1 1984 . . . . . . . . . . . . . . 15 (𝑢 = 𝑧 → (𝑢𝑣𝑧𝑣))
65anbi1d 737 . . . . . . . . . . . . . 14 (𝑢 = 𝑧 → ((𝑢𝑣𝑤𝑣) ↔ (𝑧𝑣𝑤𝑣)))
76rexbidv 3034 . . . . . . . . . . . . 13 (𝑢 = 𝑧 → (∃𝑣𝑦 (𝑢𝑣𝑤𝑣) ↔ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣)))
84, 7anbi12d 743 . . . . . . . . . . . 12 (𝑢 = 𝑧 → ((𝑤𝑢 ∧ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)) ↔ (𝑤𝑧 ∧ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣))))
98rabbidva2 3162 . . . . . . . . . . 11 (𝑢 = 𝑧 → {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)} = {𝑤𝑧 ∣ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣)})
109unieqd 4382 . . . . . . . . . 10 (𝑢 = 𝑧 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)} = {𝑤𝑧 ∣ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣)})
11 eqid 2610 . . . . . . . . . 10 (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)}) = (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})
12 vex 3176 . . . . . . . . . . . 12 𝑧 ∈ V
1312rabex 4740 . . . . . . . . . . 11 {𝑤𝑧 ∣ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣)} ∈ V
1413uniex 6851 . . . . . . . . . 10 {𝑤𝑧 ∣ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣)} ∈ V
1510, 11, 14fvmpt 6191 . . . . . . . . 9 (𝑧𝑥 → ((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧) = {𝑤𝑧 ∣ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣)})
1615eleq1d 2672 . . . . . . . 8 (𝑧𝑥 → (((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧) ∈ 𝑧 {𝑤𝑧 ∣ ∃𝑣𝑦 (𝑧𝑣𝑤𝑣)} ∈ 𝑧))
173, 16syl5ibr 235 . . . . . . 7 (𝑧𝑥 → (∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣) → ((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧) ∈ 𝑧))
1817imim2d 55 . . . . . 6 (𝑧𝑥 → ((𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) → (𝑧 ≠ ∅ → ((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧) ∈ 𝑧)))
1918ralimia 2934 . . . . 5 (∀𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) → ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧) ∈ 𝑧))
20 ssrab2 3650 . . . . . . . . . . 11 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)} ⊆ 𝑢
21 elssuni 4403 . . . . . . . . . . 11 (𝑢𝑥𝑢 𝑥)
2220, 21syl5ss 3579 . . . . . . . . . 10 (𝑢𝑥 → {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)} ⊆ 𝑥)
2322unissd 4398 . . . . . . . . 9 (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)} ⊆ 𝑥)
24 vex 3176 . . . . . . . . . . . 12 𝑥 ∈ V
2524uniex 6851 . . . . . . . . . . 11 𝑥 ∈ V
2625uniex 6851 . . . . . . . . . 10 𝑥 ∈ V
2726elpw2 4755 . . . . . . . . 9 ( {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)} ∈ 𝒫 𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)} ⊆ 𝑥)
2823, 27sylibr 223 . . . . . . . 8 (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)} ∈ 𝒫 𝑥)
2911, 28fmpti 6291 . . . . . . 7 (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)}):𝑥⟶𝒫 𝑥
3026pwex 4774 . . . . . . 7 𝒫 𝑥 ∈ V
31 fex2 7014 . . . . . . 7 (((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)}):𝑥⟶𝒫 𝑥𝑥 ∈ V ∧ 𝒫 𝑥 ∈ V) → (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)}) ∈ V)
3229, 24, 30, 31mp3an 1416 . . . . . 6 (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)}) ∈ V
33 fveq1 6102 . . . . . . . . 9 (𝑓 = (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)}) → (𝑓𝑧) = ((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧))
3433eleq1d 2672 . . . . . . . 8 (𝑓 = (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)}) → ((𝑓𝑧) ∈ 𝑧 ↔ ((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧) ∈ 𝑧))
3534imbi2d 329 . . . . . . 7 (𝑓 = (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)}) → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → ((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧) ∈ 𝑧)))
3635ralbidv 2969 . . . . . 6 (𝑓 = (𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)}) → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧) ∈ 𝑧)))
3732, 36spcev 3273 . . . . 5 (∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑢𝑥 {𝑤𝑢 ∣ ∃𝑣𝑦 (𝑢𝑣𝑤𝑣)})‘𝑧) ∈ 𝑧) → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
3819, 37syl 17 . . . 4 (∀𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
3938exlimiv 1845 . . 3 (∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
4039alimi 1730 . 2 (∀𝑥𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) → ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
41 dfac3 8827 . 2 (CHOICE ↔ ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
4240, 41sylibr 223 1 (∀𝑥𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) → CHOICE)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wal 1473   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  wrex 2897  ∃!wreu 2898  {crab 2900  Vcvv 3173  wss 3540  c0 3874  𝒫 cpw 4108   cuni 4372  cmpt 4643  wf 5800  cfv 5804  crio 6510  CHOICEwac 8821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-riota 6511  df-ac 8822
This theorem is referenced by:  dfac2  8836  axac2  9171
  Copyright terms: Public domain W3C validator