Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfac11 Structured version   Visualization version   GIF version

Theorem dfac11 36650
Description: The right-hand side of this theorem (compare with ac4 9180), sometimes known as the "axiom of multiple choice", is a choice equivalent. Curiously, this statement cannot be proved without ax-reg 8380, despite not mentioning the cumulative hierarchy in any way as most consequences of regularity do.

This is definition (MC) of [Schechter] p. 141. EDITORIAL: the proof is not original with me of course but I lost my reference sometime after writing it.

A multiple choice function allows any total order to be extended to a choice function, which in turn defines a well-ordering. Since a well ordering on a set defines a simple ordering of the power set, this allows the trivial well-ordering of the empty set to be transfinitely bootstrapped up the cumulative hierarchy to any desired level. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Stefan O'Rear, 1-Jun-2015.)

Assertion
Ref Expression
dfac11 (CHOICE ↔ ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
Distinct variable group:   𝑥,𝑧,𝑓

Proof of Theorem dfac11
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac3 8827 . . 3 (CHOICE ↔ ∀𝑎𝑐𝑑𝑎 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑))
2 raleq 3115 . . . . . 6 (𝑎 = 𝑥 → (∀𝑑𝑎 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) ↔ ∀𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑)))
32exbidv 1837 . . . . 5 (𝑎 = 𝑥 → (∃𝑐𝑑𝑎 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) ↔ ∃𝑐𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑)))
43cbvalv 2261 . . . 4 (∀𝑎𝑐𝑑𝑎 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) ↔ ∀𝑥𝑐𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑))
5 neeq1 2844 . . . . . . . . . 10 (𝑑 = 𝑧 → (𝑑 ≠ ∅ ↔ 𝑧 ≠ ∅))
6 fveq2 6103 . . . . . . . . . . 11 (𝑑 = 𝑧 → (𝑐𝑑) = (𝑐𝑧))
7 id 22 . . . . . . . . . . 11 (𝑑 = 𝑧𝑑 = 𝑧)
86, 7eleq12d 2682 . . . . . . . . . 10 (𝑑 = 𝑧 → ((𝑐𝑑) ∈ 𝑑 ↔ (𝑐𝑧) ∈ 𝑧))
95, 8imbi12d 333 . . . . . . . . 9 (𝑑 = 𝑧 → ((𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) ↔ (𝑧 ≠ ∅ → (𝑐𝑧) ∈ 𝑧)))
109cbvralv 3147 . . . . . . . 8 (∀𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑐𝑧) ∈ 𝑧))
11 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑏 = 𝑧 → (𝑐𝑏) = (𝑐𝑧))
1211sneqd 4137 . . . . . . . . . . . . . 14 (𝑏 = 𝑧 → {(𝑐𝑏)} = {(𝑐𝑧)})
13 eqid 2610 . . . . . . . . . . . . . 14 (𝑏𝑥 ↦ {(𝑐𝑏)}) = (𝑏𝑥 ↦ {(𝑐𝑏)})
14 snex 4835 . . . . . . . . . . . . . 14 {(𝑐𝑧)} ∈ V
1512, 13, 14fvmpt 6191 . . . . . . . . . . . . 13 (𝑧𝑥 → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) = {(𝑐𝑧)})
16153ad2ant1 1075 . . . . . . . . . . . 12 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) = {(𝑐𝑧)})
17 simp3 1056 . . . . . . . . . . . . . . . 16 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → (𝑐𝑧) ∈ 𝑧)
1817snssd 4281 . . . . . . . . . . . . . . 15 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → {(𝑐𝑧)} ⊆ 𝑧)
1914elpw 4114 . . . . . . . . . . . . . . 15 ({(𝑐𝑧)} ∈ 𝒫 𝑧 ↔ {(𝑐𝑧)} ⊆ 𝑧)
2018, 19sylibr 223 . . . . . . . . . . . . . 14 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → {(𝑐𝑧)} ∈ 𝒫 𝑧)
21 snfi 7923 . . . . . . . . . . . . . . 15 {(𝑐𝑧)} ∈ Fin
2221a1i 11 . . . . . . . . . . . . . 14 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → {(𝑐𝑧)} ∈ Fin)
2320, 22elind 3760 . . . . . . . . . . . . 13 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → {(𝑐𝑧)} ∈ (𝒫 𝑧 ∩ Fin))
24 fvex 6113 . . . . . . . . . . . . . . 15 (𝑐𝑧) ∈ V
2524snnz 4252 . . . . . . . . . . . . . 14 {(𝑐𝑧)} ≠ ∅
2625a1i 11 . . . . . . . . . . . . 13 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → {(𝑐𝑧)} ≠ ∅)
27 eldifsn 4260 . . . . . . . . . . . . 13 ({(𝑐𝑧)} ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}) ↔ ({(𝑐𝑧)} ∈ (𝒫 𝑧 ∩ Fin) ∧ {(𝑐𝑧)} ≠ ∅))
2823, 26, 27sylanbrc 695 . . . . . . . . . . . 12 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → {(𝑐𝑧)} ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))
2916, 28eqeltrd 2688 . . . . . . . . . . 11 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))
30293exp 1256 . . . . . . . . . 10 (𝑧𝑥 → (𝑧 ≠ ∅ → ((𝑐𝑧) ∈ 𝑧 → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))))
3130a2d 29 . . . . . . . . 9 (𝑧𝑥 → ((𝑧 ≠ ∅ → (𝑐𝑧) ∈ 𝑧) → (𝑧 ≠ ∅ → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))))
3231ralimia 2934 . . . . . . . 8 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑐𝑧) ∈ 𝑧) → ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
3310, 32sylbi 206 . . . . . . 7 (∀𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) → ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
34 vex 3176 . . . . . . . . 9 𝑥 ∈ V
3534mptex 6390 . . . . . . . 8 (𝑏𝑥 ↦ {(𝑐𝑏)}) ∈ V
36 fveq1 6102 . . . . . . . . . . 11 (𝑓 = (𝑏𝑥 ↦ {(𝑐𝑏)}) → (𝑓𝑧) = ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧))
3736eleq1d 2672 . . . . . . . . . 10 (𝑓 = (𝑏𝑥 ↦ {(𝑐𝑏)}) → ((𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}) ↔ ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
3837imbi2d 329 . . . . . . . . 9 (𝑓 = (𝑏𝑥 ↦ {(𝑐𝑏)}) → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) ↔ (𝑧 ≠ ∅ → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))))
3938ralbidv 2969 . . . . . . . 8 (𝑓 = (𝑏𝑥 ↦ {(𝑐𝑏)}) → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))))
4035, 39spcev 3273 . . . . . . 7 (∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
4133, 40syl 17 . . . . . 6 (∀𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
4241exlimiv 1845 . . . . 5 (∃𝑐𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
4342alimi 1730 . . . 4 (∀𝑥𝑐𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) → ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
444, 43sylbi 206 . . 3 (∀𝑎𝑐𝑑𝑎 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) → ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
451, 44sylbi 206 . 2 (CHOICE → ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
46 fvex 6113 . . . . . . 7 (𝑅1‘(rank‘𝑎)) ∈ V
4746pwex 4774 . . . . . 6 𝒫 (𝑅1‘(rank‘𝑎)) ∈ V
48 raleq 3115 . . . . . . 7 (𝑥 = 𝒫 (𝑅1‘(rank‘𝑎)) → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) ↔ ∀𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))))
4948exbidv 1837 . . . . . 6 (𝑥 = 𝒫 (𝑅1‘(rank‘𝑎)) → (∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) ↔ ∃𝑓𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))))
5047, 49spcv 3272 . . . . 5 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → ∃𝑓𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
51 rankon 8541 . . . . . . . 8 (rank‘𝑎) ∈ On
5251a1i 11 . . . . . . 7 (∀𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → (rank‘𝑎) ∈ On)
53 id 22 . . . . . . 7 (∀𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → ∀𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
5452, 53aomclem8 36649 . . . . . 6 (∀𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → ∃𝑏 𝑏 We (𝑅1‘(rank‘𝑎)))
5554exlimiv 1845 . . . . 5 (∃𝑓𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → ∃𝑏 𝑏 We (𝑅1‘(rank‘𝑎)))
56 vex 3176 . . . . . 6 𝑎 ∈ V
57 r1rankid 8605 . . . . . 6 (𝑎 ∈ V → 𝑎 ⊆ (𝑅1‘(rank‘𝑎)))
58 wess 5025 . . . . . . 7 (𝑎 ⊆ (𝑅1‘(rank‘𝑎)) → (𝑏 We (𝑅1‘(rank‘𝑎)) → 𝑏 We 𝑎))
5958eximdv 1833 . . . . . 6 (𝑎 ⊆ (𝑅1‘(rank‘𝑎)) → (∃𝑏 𝑏 We (𝑅1‘(rank‘𝑎)) → ∃𝑏 𝑏 We 𝑎))
6056, 57, 59mp2b 10 . . . . 5 (∃𝑏 𝑏 We (𝑅1‘(rank‘𝑎)) → ∃𝑏 𝑏 We 𝑎)
6150, 55, 603syl 18 . . . 4 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → ∃𝑏 𝑏 We 𝑎)
6261alrimiv 1842 . . 3 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → ∀𝑎𝑏 𝑏 We 𝑎)
63 dfac8 8840 . . 3 (CHOICE ↔ ∀𝑎𝑏 𝑏 We 𝑎)
6462, 63sylibr 223 . 2 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → CHOICE)
6545, 64impbii 198 1 (CHOICE ↔ ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  w3a 1031  wal 1473   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  Vcvv 3173  cdif 3537  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125  cmpt 4643   We wwe 4996  Oncon0 5640  cfv 5804  Fincfn 7841  𝑅1cr1 8508  rankcrnk 8509  CHOICEwac 8821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-reg 8380  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-er 7629  df-map 7746  df-en 7842  df-fin 7845  df-sup 8231  df-r1 8510  df-rank 8511  df-card 8648  df-ac 8822
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator