Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-mdl Structured version   Visualization version   GIF version

Definition df-mdl 30771
Description: Define the set of models of a formal system. (Contributed by Mario Carneiro, 14-Jul-2016.)
Assertion
Ref Expression
df-mdl mMdl = {𝑡 ∈ mFS ∣ [(mUV‘𝑡) / 𝑢][(mEx‘𝑡) / 𝑥][(mVL‘𝑡) / 𝑣][(mEval‘𝑡) / 𝑛][(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚𝑣 ((∀𝑒𝑥 (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑢 “ {(1st𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)⟨𝑚, ((mVH‘𝑡)‘𝑦)⟩𝑛(𝑚𝑦) ∧ ∀𝑑𝑎(⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) → ((∀𝑦𝑧(𝑦𝑑𝑧 → (𝑚𝑦)𝑓(𝑚𝑧)) ∧ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(⟨𝑠, 𝑚⟩(mVSubst‘𝑡)𝑦 → (𝑛 “ {⟨𝑚, (𝑠𝑒)⟩}) = (𝑛 “ {⟨𝑦, 𝑒⟩})) ∧ ∀𝑝𝑣𝑒𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {⟨𝑚, 𝑒⟩}) = (𝑛 “ {⟨𝑝, 𝑒⟩})) ∧ ∀𝑦𝑢𝑒𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑓 “ {𝑦})))))}
Distinct variable group:   𝑎,𝑑,𝑒,𝑓,,𝑚,𝑛,𝑝,𝑠,𝑡,𝑢,𝑣,𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-mdl
StepHypRef Expression
1 cmdl 30760 . 2 class mMdl
2 vu . . . . . . . . . . . 12 setvar 𝑢
32cv 1474 . . . . . . . . . . 11 class 𝑢
4 vt . . . . . . . . . . . . . 14 setvar 𝑡
54cv 1474 . . . . . . . . . . . . 13 class 𝑡
6 cmtc 30615 . . . . . . . . . . . . 13 class mTC
75, 6cfv 5804 . . . . . . . . . . . 12 class (mTC‘𝑡)
8 cvv 3173 . . . . . . . . . . . 12 class V
97, 8cxp 5036 . . . . . . . . . . 11 class ((mTC‘𝑡) × V)
103, 9wss 3540 . . . . . . . . . 10 wff 𝑢 ⊆ ((mTC‘𝑡) × V)
11 vf . . . . . . . . . . . 12 setvar 𝑓
1211cv 1474 . . . . . . . . . . 11 class 𝑓
13 cmfr 30758 . . . . . . . . . . . 12 class mFRel
145, 13cfv 5804 . . . . . . . . . . 11 class (mFRel‘𝑡)
1512, 14wcel 1977 . . . . . . . . . 10 wff 𝑓 ∈ (mFRel‘𝑡)
16 vn . . . . . . . . . . . 12 setvar 𝑛
1716cv 1474 . . . . . . . . . . 11 class 𝑛
18 vv . . . . . . . . . . . . . 14 setvar 𝑣
1918cv 1474 . . . . . . . . . . . . 13 class 𝑣
20 cmex 30618 . . . . . . . . . . . . . 14 class mEx
215, 20cfv 5804 . . . . . . . . . . . . 13 class (mEx‘𝑡)
2219, 21cxp 5036 . . . . . . . . . . . 12 class (𝑣 × (mEx‘𝑡))
23 cpm 7745 . . . . . . . . . . . 12 class pm
243, 22, 23co 6549 . . . . . . . . . . 11 class (𝑢pm (𝑣 × (mEx‘𝑡)))
2517, 24wcel 1977 . . . . . . . . . 10 wff 𝑛 ∈ (𝑢pm (𝑣 × (mEx‘𝑡)))
2610, 15, 25w3a 1031 . . . . . . . . 9 wff (𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢pm (𝑣 × (mEx‘𝑡))))
27 vm . . . . . . . . . . . . . . . . . 18 setvar 𝑚
2827cv 1474 . . . . . . . . . . . . . . . . 17 class 𝑚
29 ve . . . . . . . . . . . . . . . . . 18 setvar 𝑒
3029cv 1474 . . . . . . . . . . . . . . . . 17 class 𝑒
3128, 30cop 4131 . . . . . . . . . . . . . . . 16 class 𝑚, 𝑒
3231csn 4125 . . . . . . . . . . . . . . 15 class {⟨𝑚, 𝑒⟩}
3317, 32cima 5041 . . . . . . . . . . . . . 14 class (𝑛 “ {⟨𝑚, 𝑒⟩})
34 c1st 7057 . . . . . . . . . . . . . . . . 17 class 1st
3530, 34cfv 5804 . . . . . . . . . . . . . . . 16 class (1st𝑒)
3635csn 4125 . . . . . . . . . . . . . . 15 class {(1st𝑒)}
373, 36cima 5041 . . . . . . . . . . . . . 14 class (𝑢 “ {(1st𝑒)})
3833, 37wss 3540 . . . . . . . . . . . . 13 wff (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑢 “ {(1st𝑒)})
39 vx . . . . . . . . . . . . . 14 setvar 𝑥
4039cv 1474 . . . . . . . . . . . . 13 class 𝑥
4138, 29, 40wral 2896 . . . . . . . . . . . 12 wff 𝑒𝑥 (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑢 “ {(1st𝑒)})
42 vy . . . . . . . . . . . . . . . . 17 setvar 𝑦
4342cv 1474 . . . . . . . . . . . . . . . 16 class 𝑦
44 cmvh 30623 . . . . . . . . . . . . . . . . 17 class mVH
455, 44cfv 5804 . . . . . . . . . . . . . . . 16 class (mVH‘𝑡)
4643, 45cfv 5804 . . . . . . . . . . . . . . 15 class ((mVH‘𝑡)‘𝑦)
4728, 46cop 4131 . . . . . . . . . . . . . 14 class 𝑚, ((mVH‘𝑡)‘𝑦)⟩
4843, 28cfv 5804 . . . . . . . . . . . . . 14 class (𝑚𝑦)
4947, 48, 17wbr 4583 . . . . . . . . . . . . 13 wff 𝑚, ((mVH‘𝑡)‘𝑦)⟩𝑛(𝑚𝑦)
50 cmvar 30612 . . . . . . . . . . . . . 14 class mVR
515, 50cfv 5804 . . . . . . . . . . . . 13 class (mVR‘𝑡)
5249, 42, 51wral 2896 . . . . . . . . . . . 12 wff 𝑦 ∈ (mVR‘𝑡)⟨𝑚, ((mVH‘𝑡)‘𝑦)⟩𝑛(𝑚𝑦)
53 vd . . . . . . . . . . . . . . . . . . 19 setvar 𝑑
5453cv 1474 . . . . . . . . . . . . . . . . . 18 class 𝑑
55 vh . . . . . . . . . . . . . . . . . . 19 setvar
5655cv 1474 . . . . . . . . . . . . . . . . . 18 class
57 va . . . . . . . . . . . . . . . . . . 19 setvar 𝑎
5857cv 1474 . . . . . . . . . . . . . . . . . 18 class 𝑎
5954, 56, 58cotp 4133 . . . . . . . . . . . . . . . . 17 class 𝑑, , 𝑎
60 cmax 30616 . . . . . . . . . . . . . . . . . 18 class mAx
615, 60cfv 5804 . . . . . . . . . . . . . . . . 17 class (mAx‘𝑡)
6259, 61wcel 1977 . . . . . . . . . . . . . . . 16 wff 𝑑, , 𝑎⟩ ∈ (mAx‘𝑡)
63 vz . . . . . . . . . . . . . . . . . . . . . . 23 setvar 𝑧
6463cv 1474 . . . . . . . . . . . . . . . . . . . . . 22 class 𝑧
6543, 64, 54wbr 4583 . . . . . . . . . . . . . . . . . . . . 21 wff 𝑦𝑑𝑧
6664, 28cfv 5804 . . . . . . . . . . . . . . . . . . . . . 22 class (𝑚𝑧)
6748, 66, 12wbr 4583 . . . . . . . . . . . . . . . . . . . . 21 wff (𝑚𝑦)𝑓(𝑚𝑧)
6865, 67wi 4 . . . . . . . . . . . . . . . . . . . 20 wff (𝑦𝑑𝑧 → (𝑚𝑦)𝑓(𝑚𝑧))
6968, 63wal 1473 . . . . . . . . . . . . . . . . . . 19 wff 𝑧(𝑦𝑑𝑧 → (𝑚𝑦)𝑓(𝑚𝑧))
7069, 42wal 1473 . . . . . . . . . . . . . . . . . 18 wff 𝑦𝑧(𝑦𝑑𝑧 → (𝑚𝑦)𝑓(𝑚𝑧))
7117cdm 5038 . . . . . . . . . . . . . . . . . . . 20 class dom 𝑛
7228csn 4125 . . . . . . . . . . . . . . . . . . . 20 class {𝑚}
7371, 72cima 5041 . . . . . . . . . . . . . . . . . . 19 class (dom 𝑛 “ {𝑚})
7456, 73wss 3540 . . . . . . . . . . . . . . . . . 18 wff ⊆ (dom 𝑛 “ {𝑚})
7570, 74wa 383 . . . . . . . . . . . . . . . . 17 wff (∀𝑦𝑧(𝑦𝑑𝑧 → (𝑚𝑦)𝑓(𝑚𝑧)) ∧ ⊆ (dom 𝑛 “ {𝑚}))
7628, 58, 71wbr 4583 . . . . . . . . . . . . . . . . 17 wff 𝑚dom 𝑛 𝑎
7775, 76wi 4 . . . . . . . . . . . . . . . 16 wff ((∀𝑦𝑧(𝑦𝑑𝑧 → (𝑚𝑦)𝑓(𝑚𝑧)) ∧ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎)
7862, 77wi 4 . . . . . . . . . . . . . . 15 wff (⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) → ((∀𝑦𝑧(𝑦𝑑𝑧 → (𝑚𝑦)𝑓(𝑚𝑧)) ∧ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))
7978, 57wal 1473 . . . . . . . . . . . . . 14 wff 𝑎(⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) → ((∀𝑦𝑧(𝑦𝑑𝑧 → (𝑚𝑦)𝑓(𝑚𝑧)) ∧ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))
8079, 55wal 1473 . . . . . . . . . . . . 13 wff 𝑎(⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) → ((∀𝑦𝑧(𝑦𝑑𝑧 → (𝑚𝑦)𝑓(𝑚𝑧)) ∧ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))
8180, 53wal 1473 . . . . . . . . . . . 12 wff 𝑑𝑎(⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) → ((∀𝑦𝑧(𝑦𝑑𝑧 → (𝑚𝑦)𝑓(𝑚𝑧)) ∧ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))
8241, 52, 81w3a 1031 . . . . . . . . . . 11 wff (∀𝑒𝑥 (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑢 “ {(1st𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)⟨𝑚, ((mVH‘𝑡)‘𝑦)⟩𝑛(𝑚𝑦) ∧ ∀𝑑𝑎(⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) → ((∀𝑦𝑧(𝑦𝑑𝑧 → (𝑚𝑦)𝑓(𝑚𝑧)) ∧ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎)))
83 vs . . . . . . . . . . . . . . . . . . 19 setvar 𝑠
8483cv 1474 . . . . . . . . . . . . . . . . . 18 class 𝑠
8584, 28cop 4131 . . . . . . . . . . . . . . . . 17 class 𝑠, 𝑚
86 cmvsb 30756 . . . . . . . . . . . . . . . . . 18 class mVSubst
875, 86cfv 5804 . . . . . . . . . . . . . . . . 17 class (mVSubst‘𝑡)
8885, 43, 87wbr 4583 . . . . . . . . . . . . . . . 16 wff 𝑠, 𝑚⟩(mVSubst‘𝑡)𝑦
8930, 84cfv 5804 . . . . . . . . . . . . . . . . . . . 20 class (𝑠𝑒)
9028, 89cop 4131 . . . . . . . . . . . . . . . . . . 19 class 𝑚, (𝑠𝑒)⟩
9190csn 4125 . . . . . . . . . . . . . . . . . 18 class {⟨𝑚, (𝑠𝑒)⟩}
9217, 91cima 5041 . . . . . . . . . . . . . . . . 17 class (𝑛 “ {⟨𝑚, (𝑠𝑒)⟩})
9343, 30cop 4131 . . . . . . . . . . . . . . . . . . 19 class 𝑦, 𝑒
9493csn 4125 . . . . . . . . . . . . . . . . . 18 class {⟨𝑦, 𝑒⟩}
9517, 94cima 5041 . . . . . . . . . . . . . . . . 17 class (𝑛 “ {⟨𝑦, 𝑒⟩})
9692, 95wceq 1475 . . . . . . . . . . . . . . . 16 wff (𝑛 “ {⟨𝑚, (𝑠𝑒)⟩}) = (𝑛 “ {⟨𝑦, 𝑒⟩})
9788, 96wi 4 . . . . . . . . . . . . . . 15 wff (⟨𝑠, 𝑚⟩(mVSubst‘𝑡)𝑦 → (𝑛 “ {⟨𝑚, (𝑠𝑒)⟩}) = (𝑛 “ {⟨𝑦, 𝑒⟩}))
9897, 42wal 1473 . . . . . . . . . . . . . 14 wff 𝑦(⟨𝑠, 𝑚⟩(mVSubst‘𝑡)𝑦 → (𝑛 “ {⟨𝑚, (𝑠𝑒)⟩}) = (𝑛 “ {⟨𝑦, 𝑒⟩}))
9998, 29, 21wral 2896 . . . . . . . . . . . . 13 wff 𝑒 ∈ (mEx‘𝑡)∀𝑦(⟨𝑠, 𝑚⟩(mVSubst‘𝑡)𝑦 → (𝑛 “ {⟨𝑚, (𝑠𝑒)⟩}) = (𝑛 “ {⟨𝑦, 𝑒⟩}))
100 cmsub 30622 . . . . . . . . . . . . . . 15 class mSubst
1015, 100cfv 5804 . . . . . . . . . . . . . 14 class (mSubst‘𝑡)
102101crn 5039 . . . . . . . . . . . . 13 class ran (mSubst‘𝑡)
10399, 83, 102wral 2896 . . . . . . . . . . . 12 wff 𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(⟨𝑠, 𝑚⟩(mVSubst‘𝑡)𝑦 → (𝑛 “ {⟨𝑚, (𝑠𝑒)⟩}) = (𝑛 “ {⟨𝑦, 𝑒⟩}))
104 cmvrs 30620 . . . . . . . . . . . . . . . . . . 19 class mVars
1055, 104cfv 5804 . . . . . . . . . . . . . . . . . 18 class (mVars‘𝑡)
10630, 105cfv 5804 . . . . . . . . . . . . . . . . 17 class ((mVars‘𝑡)‘𝑒)
10728, 106cres 5040 . . . . . . . . . . . . . . . 16 class (𝑚 ↾ ((mVars‘𝑡)‘𝑒))
108 vp . . . . . . . . . . . . . . . . . 18 setvar 𝑝
109108cv 1474 . . . . . . . . . . . . . . . . 17 class 𝑝
110109, 106cres 5040 . . . . . . . . . . . . . . . 16 class (𝑝 ↾ ((mVars‘𝑡)‘𝑒))
111107, 110wceq 1475 . . . . . . . . . . . . . . 15 wff (𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒))
112109, 30cop 4131 . . . . . . . . . . . . . . . . . 18 class 𝑝, 𝑒
113112csn 4125 . . . . . . . . . . . . . . . . 17 class {⟨𝑝, 𝑒⟩}
11417, 113cima 5041 . . . . . . . . . . . . . . . 16 class (𝑛 “ {⟨𝑝, 𝑒⟩})
11533, 114wceq 1475 . . . . . . . . . . . . . . 15 wff (𝑛 “ {⟨𝑚, 𝑒⟩}) = (𝑛 “ {⟨𝑝, 𝑒⟩})
116111, 115wi 4 . . . . . . . . . . . . . 14 wff ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {⟨𝑚, 𝑒⟩}) = (𝑛 “ {⟨𝑝, 𝑒⟩}))
117116, 29, 40wral 2896 . . . . . . . . . . . . 13 wff 𝑒𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {⟨𝑚, 𝑒⟩}) = (𝑛 “ {⟨𝑝, 𝑒⟩}))
118117, 108, 19wral 2896 . . . . . . . . . . . 12 wff 𝑝𝑣𝑒𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {⟨𝑚, 𝑒⟩}) = (𝑛 “ {⟨𝑝, 𝑒⟩}))
11928, 106cima 5041 . . . . . . . . . . . . . . . 16 class (𝑚 “ ((mVars‘𝑡)‘𝑒))
12043csn 4125 . . . . . . . . . . . . . . . . 17 class {𝑦}
12112, 120cima 5041 . . . . . . . . . . . . . . . 16 class (𝑓 “ {𝑦})
122119, 121wss 3540 . . . . . . . . . . . . . . 15 wff (𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦})
12333, 121wss 3540 . . . . . . . . . . . . . . 15 wff (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑓 “ {𝑦})
124122, 123wi 4 . . . . . . . . . . . . . 14 wff ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑓 “ {𝑦}))
125124, 29, 40wral 2896 . . . . . . . . . . . . 13 wff 𝑒𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑓 “ {𝑦}))
126125, 42, 3wral 2896 . . . . . . . . . . . 12 wff 𝑦𝑢𝑒𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑓 “ {𝑦}))
127103, 118, 126w3a 1031 . . . . . . . . . . 11 wff (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(⟨𝑠, 𝑚⟩(mVSubst‘𝑡)𝑦 → (𝑛 “ {⟨𝑚, (𝑠𝑒)⟩}) = (𝑛 “ {⟨𝑦, 𝑒⟩})) ∧ ∀𝑝𝑣𝑒𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {⟨𝑚, 𝑒⟩}) = (𝑛 “ {⟨𝑝, 𝑒⟩})) ∧ ∀𝑦𝑢𝑒𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑓 “ {𝑦})))
12882, 127wa 383 . . . . . . . . . 10 wff ((∀𝑒𝑥 (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑢 “ {(1st𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)⟨𝑚, ((mVH‘𝑡)‘𝑦)⟩𝑛(𝑚𝑦) ∧ ∀𝑑𝑎(⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) → ((∀𝑦𝑧(𝑦𝑑𝑧 → (𝑚𝑦)𝑓(𝑚𝑧)) ∧ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(⟨𝑠, 𝑚⟩(mVSubst‘𝑡)𝑦 → (𝑛 “ {⟨𝑚, (𝑠𝑒)⟩}) = (𝑛 “ {⟨𝑦, 𝑒⟩})) ∧ ∀𝑝𝑣𝑒𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {⟨𝑚, 𝑒⟩}) = (𝑛 “ {⟨𝑝, 𝑒⟩})) ∧ ∀𝑦𝑢𝑒𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑓 “ {𝑦}))))
129128, 27, 19wral 2896 . . . . . . . . 9 wff 𝑚𝑣 ((∀𝑒𝑥 (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑢 “ {(1st𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)⟨𝑚, ((mVH‘𝑡)‘𝑦)⟩𝑛(𝑚𝑦) ∧ ∀𝑑𝑎(⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) → ((∀𝑦𝑧(𝑦𝑑𝑧 → (𝑚𝑦)𝑓(𝑚𝑧)) ∧ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(⟨𝑠, 𝑚⟩(mVSubst‘𝑡)𝑦 → (𝑛 “ {⟨𝑚, (𝑠𝑒)⟩}) = (𝑛 “ {⟨𝑦, 𝑒⟩})) ∧ ∀𝑝𝑣𝑒𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {⟨𝑚, 𝑒⟩}) = (𝑛 “ {⟨𝑝, 𝑒⟩})) ∧ ∀𝑦𝑢𝑒𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑓 “ {𝑦}))))
13026, 129wa 383 . . . . . . . 8 wff ((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚𝑣 ((∀𝑒𝑥 (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑢 “ {(1st𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)⟨𝑚, ((mVH‘𝑡)‘𝑦)⟩𝑛(𝑚𝑦) ∧ ∀𝑑𝑎(⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) → ((∀𝑦𝑧(𝑦𝑑𝑧 → (𝑚𝑦)𝑓(𝑚𝑧)) ∧ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(⟨𝑠, 𝑚⟩(mVSubst‘𝑡)𝑦 → (𝑛 “ {⟨𝑚, (𝑠𝑒)⟩}) = (𝑛 “ {⟨𝑦, 𝑒⟩})) ∧ ∀𝑝𝑣𝑒𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {⟨𝑚, 𝑒⟩}) = (𝑛 “ {⟨𝑝, 𝑒⟩})) ∧ ∀𝑦𝑢𝑒𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑓 “ {𝑦})))))
131 cmfsh 30757 . . . . . . . . 9 class mFresh
1325, 131cfv 5804 . . . . . . . 8 class (mFresh‘𝑡)
133130, 11, 132wsbc 3402 . . . . . . 7 wff [(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚𝑣 ((∀𝑒𝑥 (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑢 “ {(1st𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)⟨𝑚, ((mVH‘𝑡)‘𝑦)⟩𝑛(𝑚𝑦) ∧ ∀𝑑𝑎(⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) → ((∀𝑦𝑧(𝑦𝑑𝑧 → (𝑚𝑦)𝑓(𝑚𝑧)) ∧ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(⟨𝑠, 𝑚⟩(mVSubst‘𝑡)𝑦 → (𝑛 “ {⟨𝑚, (𝑠𝑒)⟩}) = (𝑛 “ {⟨𝑦, 𝑒⟩})) ∧ ∀𝑝𝑣𝑒𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {⟨𝑚, 𝑒⟩}) = (𝑛 “ {⟨𝑝, 𝑒⟩})) ∧ ∀𝑦𝑢𝑒𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑓 “ {𝑦})))))
134 cmevl 30759 . . . . . . . 8 class mEval
1355, 134cfv 5804 . . . . . . 7 class (mEval‘𝑡)
136133, 16, 135wsbc 3402 . . . . . 6 wff [(mEval‘𝑡) / 𝑛][(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚𝑣 ((∀𝑒𝑥 (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑢 “ {(1st𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)⟨𝑚, ((mVH‘𝑡)‘𝑦)⟩𝑛(𝑚𝑦) ∧ ∀𝑑𝑎(⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) → ((∀𝑦𝑧(𝑦𝑑𝑧 → (𝑚𝑦)𝑓(𝑚𝑧)) ∧ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(⟨𝑠, 𝑚⟩(mVSubst‘𝑡)𝑦 → (𝑛 “ {⟨𝑚, (𝑠𝑒)⟩}) = (𝑛 “ {⟨𝑦, 𝑒⟩})) ∧ ∀𝑝𝑣𝑒𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {⟨𝑚, 𝑒⟩}) = (𝑛 “ {⟨𝑝, 𝑒⟩})) ∧ ∀𝑦𝑢𝑒𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑓 “ {𝑦})))))
137 cmvl 30755 . . . . . . 7 class mVL
1385, 137cfv 5804 . . . . . 6 class (mVL‘𝑡)
139136, 18, 138wsbc 3402 . . . . 5 wff [(mVL‘𝑡) / 𝑣][(mEval‘𝑡) / 𝑛][(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚𝑣 ((∀𝑒𝑥 (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑢 “ {(1st𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)⟨𝑚, ((mVH‘𝑡)‘𝑦)⟩𝑛(𝑚𝑦) ∧ ∀𝑑𝑎(⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) → ((∀𝑦𝑧(𝑦𝑑𝑧 → (𝑚𝑦)𝑓(𝑚𝑧)) ∧ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(⟨𝑠, 𝑚⟩(mVSubst‘𝑡)𝑦 → (𝑛 “ {⟨𝑚, (𝑠𝑒)⟩}) = (𝑛 “ {⟨𝑦, 𝑒⟩})) ∧ ∀𝑝𝑣𝑒𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {⟨𝑚, 𝑒⟩}) = (𝑛 “ {⟨𝑝, 𝑒⟩})) ∧ ∀𝑦𝑢𝑒𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑓 “ {𝑦})))))
140139, 39, 21wsbc 3402 . . . 4 wff [(mEx‘𝑡) / 𝑥][(mVL‘𝑡) / 𝑣][(mEval‘𝑡) / 𝑛][(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚𝑣 ((∀𝑒𝑥 (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑢 “ {(1st𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)⟨𝑚, ((mVH‘𝑡)‘𝑦)⟩𝑛(𝑚𝑦) ∧ ∀𝑑𝑎(⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) → ((∀𝑦𝑧(𝑦𝑑𝑧 → (𝑚𝑦)𝑓(𝑚𝑧)) ∧ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(⟨𝑠, 𝑚⟩(mVSubst‘𝑡)𝑦 → (𝑛 “ {⟨𝑚, (𝑠𝑒)⟩}) = (𝑛 “ {⟨𝑦, 𝑒⟩})) ∧ ∀𝑝𝑣𝑒𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {⟨𝑚, 𝑒⟩}) = (𝑛 “ {⟨𝑝, 𝑒⟩})) ∧ ∀𝑦𝑢𝑒𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑓 “ {𝑦})))))
141 cmuv 30754 . . . . 5 class mUV
1425, 141cfv 5804 . . . 4 class (mUV‘𝑡)
143140, 2, 142wsbc 3402 . . 3 wff [(mUV‘𝑡) / 𝑢][(mEx‘𝑡) / 𝑥][(mVL‘𝑡) / 𝑣][(mEval‘𝑡) / 𝑛][(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚𝑣 ((∀𝑒𝑥 (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑢 “ {(1st𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)⟨𝑚, ((mVH‘𝑡)‘𝑦)⟩𝑛(𝑚𝑦) ∧ ∀𝑑𝑎(⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) → ((∀𝑦𝑧(𝑦𝑑𝑧 → (𝑚𝑦)𝑓(𝑚𝑧)) ∧ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(⟨𝑠, 𝑚⟩(mVSubst‘𝑡)𝑦 → (𝑛 “ {⟨𝑚, (𝑠𝑒)⟩}) = (𝑛 “ {⟨𝑦, 𝑒⟩})) ∧ ∀𝑝𝑣𝑒𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {⟨𝑚, 𝑒⟩}) = (𝑛 “ {⟨𝑝, 𝑒⟩})) ∧ ∀𝑦𝑢𝑒𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑓 “ {𝑦})))))
144 cmfs 30627 . . 3 class mFS
145143, 4, 144crab 2900 . 2 class {𝑡 ∈ mFS ∣ [(mUV‘𝑡) / 𝑢][(mEx‘𝑡) / 𝑥][(mVL‘𝑡) / 𝑣][(mEval‘𝑡) / 𝑛][(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚𝑣 ((∀𝑒𝑥 (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑢 “ {(1st𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)⟨𝑚, ((mVH‘𝑡)‘𝑦)⟩𝑛(𝑚𝑦) ∧ ∀𝑑𝑎(⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) → ((∀𝑦𝑧(𝑦𝑑𝑧 → (𝑚𝑦)𝑓(𝑚𝑧)) ∧ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(⟨𝑠, 𝑚⟩(mVSubst‘𝑡)𝑦 → (𝑛 “ {⟨𝑚, (𝑠𝑒)⟩}) = (𝑛 “ {⟨𝑦, 𝑒⟩})) ∧ ∀𝑝𝑣𝑒𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {⟨𝑚, 𝑒⟩}) = (𝑛 “ {⟨𝑝, 𝑒⟩})) ∧ ∀𝑦𝑢𝑒𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑓 “ {𝑦})))))}
1461, 145wceq 1475 1 wff mMdl = {𝑡 ∈ mFS ∣ [(mUV‘𝑡) / 𝑢][(mEx‘𝑡) / 𝑥][(mVL‘𝑡) / 𝑣][(mEval‘𝑡) / 𝑛][(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚𝑣 ((∀𝑒𝑥 (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑢 “ {(1st𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)⟨𝑚, ((mVH‘𝑡)‘𝑦)⟩𝑛(𝑚𝑦) ∧ ∀𝑑𝑎(⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) → ((∀𝑦𝑧(𝑦𝑑𝑧 → (𝑚𝑦)𝑓(𝑚𝑧)) ∧ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(⟨𝑠, 𝑚⟩(mVSubst‘𝑡)𝑦 → (𝑛 “ {⟨𝑚, (𝑠𝑒)⟩}) = (𝑛 “ {⟨𝑦, 𝑒⟩})) ∧ ∀𝑝𝑣𝑒𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {⟨𝑚, 𝑒⟩}) = (𝑛 “ {⟨𝑝, 𝑒⟩})) ∧ ∀𝑦𝑢𝑒𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑓 “ {𝑦})))))}
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator