MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisumlem3 Structured version   Visualization version   GIF version

Theorem dchrisumlem3 24980
Description: Lemma for dchrisum 24981. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrisum.2 (𝑛 = 𝑥𝐴 = 𝐵)
dchrisum.3 (𝜑𝑀 ∈ ℕ)
dchrisum.4 ((𝜑𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
dchrisum.5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
dchrisum.6 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
dchrisum.7 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · 𝐴))
dchrisum.9 (𝜑𝑅 ∈ ℝ)
dchrisum.10 (𝜑 → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛))) ≤ 𝑅)
Assertion
Ref Expression
dchrisumlem3 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵)))
Distinct variable groups:   𝑢,𝑛,𝑥,𝑐,𝑡   1 ,𝑐   𝑡,𝑛, 1 ,𝑥   𝑢,𝑐,𝐹,𝑛,𝑡,𝑥   𝐴,𝑐,𝑡,𝑥   𝑁,𝑐,𝑛,𝑡,𝑢,𝑥   𝜑,𝑐,𝑛,𝑡,𝑢,𝑥   𝑅,𝑐,𝑛,𝑢,𝑥   𝐵,𝑐,𝑛   𝑛,𝑍,𝑥   𝐷,𝑐,𝑛,𝑡,𝑥   𝐿,𝑐,𝑛,𝑡,𝑢,𝑥   𝑀,𝑐,𝑛,𝑢,𝑥   𝑋,𝑐,𝑛,𝑡,𝑢,𝑥
Allowed substitution hints:   𝐴(𝑢,𝑛)   𝐵(𝑥,𝑢,𝑡)   𝐷(𝑢)   𝑅(𝑡)   1 (𝑢)   𝐺(𝑥,𝑢,𝑡,𝑛,𝑐)   𝑀(𝑡)   𝑍(𝑢,𝑡,𝑐)

Proof of Theorem dchrisumlem3
Dummy variables 𝑘 𝑚 𝑖 𝑗 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11599 . . . 4 ℕ = (ℤ‘1)
2 1zzd 11285 . . . . . 6 (𝜑 → 1 ∈ ℤ)
3 simpr 476 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
4 rpvmasum.g . . . . . . . . . 10 𝐺 = (DChr‘𝑁)
5 rpvmasum.z . . . . . . . . . 10 𝑍 = (ℤ/nℤ‘𝑁)
6 rpvmasum.d . . . . . . . . . 10 𝐷 = (Base‘𝐺)
7 rpvmasum.l . . . . . . . . . 10 𝐿 = (ℤRHom‘𝑍)
8 dchrisum.b . . . . . . . . . . 11 (𝜑𝑋𝐷)
98adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ) → 𝑋𝐷)
103nnzd 11357 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℤ)
114, 5, 6, 7, 9, 10dchrzrhcl 24770 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ) → (𝑋‘(𝐿𝑖)) ∈ ℂ)
12 dchrisum.4 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
1312ralrimiva 2949 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ)
14 nnrp 11718 . . . . . . . . . . 11 (𝑖 ∈ ℕ → 𝑖 ∈ ℝ+)
15 nfcsb1v 3515 . . . . . . . . . . . . . 14 𝑛𝑖 / 𝑛𝐴
1615nfel1 2765 . . . . . . . . . . . . 13 𝑛𝑖 / 𝑛𝐴 ∈ ℝ
17 csbeq1a 3508 . . . . . . . . . . . . . 14 (𝑛 = 𝑖𝐴 = 𝑖 / 𝑛𝐴)
1817eleq1d 2672 . . . . . . . . . . . . 13 (𝑛 = 𝑖 → (𝐴 ∈ ℝ ↔ 𝑖 / 𝑛𝐴 ∈ ℝ))
1916, 18rspc 3276 . . . . . . . . . . . 12 (𝑖 ∈ ℝ+ → (∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ → 𝑖 / 𝑛𝐴 ∈ ℝ))
2019impcom 445 . . . . . . . . . . 11 ((∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ ∧ 𝑖 ∈ ℝ+) → 𝑖 / 𝑛𝐴 ∈ ℝ)
2113, 14, 20syl2an 493 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ) → 𝑖 / 𝑛𝐴 ∈ ℝ)
2221recnd 9947 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ) → 𝑖 / 𝑛𝐴 ∈ ℂ)
2311, 22mulcld 9939 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) ∈ ℂ)
24 nfcv 2751 . . . . . . . . 9 𝑛𝑖
25 nfcv 2751 . . . . . . . . . 10 𝑛(𝑋‘(𝐿𝑖))
26 nfcv 2751 . . . . . . . . . 10 𝑛 ·
2725, 26, 15nfov 6575 . . . . . . . . 9 𝑛((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)
28 fveq2 6103 . . . . . . . . . . 11 (𝑛 = 𝑖 → (𝐿𝑛) = (𝐿𝑖))
2928fveq2d 6107 . . . . . . . . . 10 (𝑛 = 𝑖 → (𝑋‘(𝐿𝑛)) = (𝑋‘(𝐿𝑖)))
3029, 17oveq12d 6567 . . . . . . . . 9 (𝑛 = 𝑖 → ((𝑋‘(𝐿𝑛)) · 𝐴) = ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴))
31 dchrisum.7 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · 𝐴))
3224, 27, 30, 31fvmptf 6209 . . . . . . . 8 ((𝑖 ∈ ℕ ∧ ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) ∈ ℂ) → (𝐹𝑖) = ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴))
333, 23, 32syl2anc 691 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) = ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴))
3433, 23eqeltrd 2688 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ℂ)
351, 2, 34serf 12691 . . . . 5 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
3635ffvelrnda 6267 . . . 4 ((𝜑𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) ∈ ℂ)
3712recnd 9947 . . . . . . . . 9 ((𝜑𝑛 ∈ ℝ+) → 𝐴 ∈ ℂ)
3837ralrimiva 2949 . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ℝ+ 𝐴 ∈ ℂ)
3938adantr 480 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → ∀𝑛 ∈ ℝ+ 𝐴 ∈ ℂ)
40 id 22 . . . . . . . 8 (𝑒 ∈ ℝ+𝑒 ∈ ℝ+)
41 2re 10967 . . . . . . . . . 10 2 ∈ ℝ
42 dchrisum.9 . . . . . . . . . 10 (𝜑𝑅 ∈ ℝ)
43 remulcl 9900 . . . . . . . . . 10 ((2 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (2 · 𝑅) ∈ ℝ)
4441, 42, 43sylancr 694 . . . . . . . . 9 (𝜑 → (2 · 𝑅) ∈ ℝ)
45 rpvmasum.a . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
46 lbfzo0 12375 . . . . . . . . . . . 12 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
4745, 46sylibr 223 . . . . . . . . . . 11 (𝜑 → 0 ∈ (0..^𝑁))
48 dchrisum.10 . . . . . . . . . . 11 (𝜑 → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛))) ≤ 𝑅)
49 oveq2 6557 . . . . . . . . . . . . . . . . 17 (𝑢 = 0 → (0..^𝑢) = (0..^0))
50 fzo0 12361 . . . . . . . . . . . . . . . . 17 (0..^0) = ∅
5149, 50syl6eq 2660 . . . . . . . . . . . . . . . 16 (𝑢 = 0 → (0..^𝑢) = ∅)
5251sumeq1d 14279 . . . . . . . . . . . . . . 15 (𝑢 = 0 → Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ ∅ (𝑋‘(𝐿𝑛)))
53 sum0 14299 . . . . . . . . . . . . . . 15 Σ𝑛 ∈ ∅ (𝑋‘(𝐿𝑛)) = 0
5452, 53syl6eq 2660 . . . . . . . . . . . . . 14 (𝑢 = 0 → Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛)) = 0)
5554abs00bd 13879 . . . . . . . . . . . . 13 (𝑢 = 0 → (abs‘Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛))) = 0)
5655breq1d 4593 . . . . . . . . . . . 12 (𝑢 = 0 → ((abs‘Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛))) ≤ 𝑅 ↔ 0 ≤ 𝑅))
5756rspcv 3278 . . . . . . . . . . 11 (0 ∈ (0..^𝑁) → (∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛))) ≤ 𝑅 → 0 ≤ 𝑅))
5847, 48, 57sylc 63 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑅)
59 0le2 10988 . . . . . . . . . . 11 0 ≤ 2
60 mulge0 10425 . . . . . . . . . . 11 (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅)) → 0 ≤ (2 · 𝑅))
6141, 59, 60mpanl12 714 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 0 ≤ (2 · 𝑅))
6242, 58, 61syl2anc 691 . . . . . . . . 9 (𝜑 → 0 ≤ (2 · 𝑅))
6344, 62ge0p1rpd 11778 . . . . . . . 8 (𝜑 → ((2 · 𝑅) + 1) ∈ ℝ+)
64 rpdivcl 11732 . . . . . . . 8 ((𝑒 ∈ ℝ+ ∧ ((2 · 𝑅) + 1) ∈ ℝ+) → (𝑒 / ((2 · 𝑅) + 1)) ∈ ℝ+)
6540, 63, 64syl2anr 494 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → (𝑒 / ((2 · 𝑅) + 1)) ∈ ℝ+)
66 dchrisum.6 . . . . . . . 8 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
6766adantr 480 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
6839, 65, 67rlimi 14092 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → ∃𝑚 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑚𝑛 → (abs‘(𝐴 − 0)) < (𝑒 / ((2 · 𝑅) + 1))))
69 simpr 476 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℝ) → 𝑚 ∈ ℝ)
70 dchrisum.3 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ)
7170nnred 10912 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ)
7271adantr 480 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℝ) → 𝑀 ∈ ℝ)
7369, 72ifcld 4081 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℝ) → if(𝑀𝑚, 𝑚, 𝑀) ∈ ℝ)
74 0red 9920 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℝ) → 0 ∈ ℝ)
7570nngt0d 10941 . . . . . . . . . . . . 13 (𝜑 → 0 < 𝑀)
7675adantr 480 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℝ) → 0 < 𝑀)
77 max1 11890 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ 𝑚 ∈ ℝ) → 𝑀 ≤ if(𝑀𝑚, 𝑚, 𝑀))
7871, 77sylan 487 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℝ) → 𝑀 ≤ if(𝑀𝑚, 𝑚, 𝑀))
7974, 72, 73, 76, 78ltletrd 10076 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℝ) → 0 < if(𝑀𝑚, 𝑚, 𝑀))
8073, 79elrpd 11745 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℝ) → if(𝑀𝑚, 𝑚, 𝑀) ∈ ℝ+)
8180adantlr 747 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → if(𝑀𝑚, 𝑚, 𝑀) ∈ ℝ+)
82 nfv 1830 . . . . . . . . . . 11 𝑛 𝑚 ≤ if(𝑀𝑚, 𝑚, 𝑀)
83 nfcv 2751 . . . . . . . . . . . . 13 𝑛abs
84 nfcsb1v 3515 . . . . . . . . . . . . . 14 𝑛if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴
85 nfcv 2751 . . . . . . . . . . . . . 14 𝑛
86 nfcv 2751 . . . . . . . . . . . . . 14 𝑛0
8784, 85, 86nfov 6575 . . . . . . . . . . . . 13 𝑛(if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴 − 0)
8883, 87nffv 6110 . . . . . . . . . . . 12 𝑛(abs‘(if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴 − 0))
89 nfcv 2751 . . . . . . . . . . . 12 𝑛 <
90 nfcv 2751 . . . . . . . . . . . 12 𝑛(𝑒 / ((2 · 𝑅) + 1))
9188, 89, 90nfbr 4629 . . . . . . . . . . 11 𝑛(abs‘(if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴 − 0)) < (𝑒 / ((2 · 𝑅) + 1))
9282, 91nfim 1813 . . . . . . . . . 10 𝑛(𝑚 ≤ if(𝑀𝑚, 𝑚, 𝑀) → (abs‘(if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴 − 0)) < (𝑒 / ((2 · 𝑅) + 1)))
93 breq2 4587 . . . . . . . . . . 11 (𝑛 = if(𝑀𝑚, 𝑚, 𝑀) → (𝑚𝑛𝑚 ≤ if(𝑀𝑚, 𝑚, 𝑀)))
94 csbeq1a 3508 . . . . . . . . . . . . . 14 (𝑛 = if(𝑀𝑚, 𝑚, 𝑀) → 𝐴 = if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴)
9594oveq1d 6564 . . . . . . . . . . . . 13 (𝑛 = if(𝑀𝑚, 𝑚, 𝑀) → (𝐴 − 0) = (if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴 − 0))
9695fveq2d 6107 . . . . . . . . . . . 12 (𝑛 = if(𝑀𝑚, 𝑚, 𝑀) → (abs‘(𝐴 − 0)) = (abs‘(if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴 − 0)))
9796breq1d 4593 . . . . . . . . . . 11 (𝑛 = if(𝑀𝑚, 𝑚, 𝑀) → ((abs‘(𝐴 − 0)) < (𝑒 / ((2 · 𝑅) + 1)) ↔ (abs‘(if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴 − 0)) < (𝑒 / ((2 · 𝑅) + 1))))
9893, 97imbi12d 333 . . . . . . . . . 10 (𝑛 = if(𝑀𝑚, 𝑚, 𝑀) → ((𝑚𝑛 → (abs‘(𝐴 − 0)) < (𝑒 / ((2 · 𝑅) + 1))) ↔ (𝑚 ≤ if(𝑀𝑚, 𝑚, 𝑀) → (abs‘(if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴 − 0)) < (𝑒 / ((2 · 𝑅) + 1)))))
9992, 98rspc 3276 . . . . . . . . 9 (if(𝑀𝑚, 𝑚, 𝑀) ∈ ℝ+ → (∀𝑛 ∈ ℝ+ (𝑚𝑛 → (abs‘(𝐴 − 0)) < (𝑒 / ((2 · 𝑅) + 1))) → (𝑚 ≤ if(𝑀𝑚, 𝑚, 𝑀) → (abs‘(if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴 − 0)) < (𝑒 / ((2 · 𝑅) + 1)))))
10081, 99syl 17 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → (∀𝑛 ∈ ℝ+ (𝑚𝑛 → (abs‘(𝐴 − 0)) < (𝑒 / ((2 · 𝑅) + 1))) → (𝑚 ≤ if(𝑀𝑚, 𝑚, 𝑀) → (abs‘(if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴 − 0)) < (𝑒 / ((2 · 𝑅) + 1)))))
10171ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → 𝑀 ∈ ℝ)
102 max2 11892 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑚 ∈ ℝ) → 𝑚 ≤ if(𝑀𝑚, 𝑚, 𝑀))
103101, 102sylancom 698 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → 𝑚 ≤ if(𝑀𝑚, 𝑚, 𝑀))
10413ad2antrr 758 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → ∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ)
10584nfel1 2765 . . . . . . . . . . . . . . . . . . 19 𝑛if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴 ∈ ℝ
10694eleq1d 2672 . . . . . . . . . . . . . . . . . . 19 (𝑛 = if(𝑀𝑚, 𝑚, 𝑀) → (𝐴 ∈ ℝ ↔ if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴 ∈ ℝ))
107105, 106rspc 3276 . . . . . . . . . . . . . . . . . 18 (if(𝑀𝑚, 𝑚, 𝑀) ∈ ℝ+ → (∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ → if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴 ∈ ℝ))
10881, 104, 107sylc 63 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴 ∈ ℝ)
109108recnd 9947 . . . . . . . . . . . . . . . 16 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴 ∈ ℂ)
110109subid1d 10260 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → (if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴 − 0) = if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴)
111110fveq2d 6107 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → (abs‘(if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴 − 0)) = (abs‘if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴))
11273adantlr 747 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → if(𝑀𝑚, 𝑚, 𝑀) ∈ ℝ)
113101, 77sylancom 698 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → 𝑀 ≤ if(𝑀𝑚, 𝑚, 𝑀))
114 elicopnf 12140 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℝ → (if(𝑀𝑚, 𝑚, 𝑀) ∈ (𝑀[,)+∞) ↔ (if(𝑀𝑚, 𝑚, 𝑀) ∈ ℝ ∧ 𝑀 ≤ if(𝑀𝑚, 𝑚, 𝑀))))
115101, 114syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → (if(𝑀𝑚, 𝑚, 𝑀) ∈ (𝑀[,)+∞) ↔ (if(𝑀𝑚, 𝑚, 𝑀) ∈ ℝ ∧ 𝑀 ≤ if(𝑀𝑚, 𝑚, 𝑀))))
116112, 113, 115mpbir2and 959 . . . . . . . . . . . . . . . 16 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → if(𝑀𝑚, 𝑚, 𝑀) ∈ (𝑀[,)+∞))
11745ad2antrr 758 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → 𝑁 ∈ ℕ)
118 rpvmasum.1 . . . . . . . . . . . . . . . . . 18 1 = (0g𝐺)
1198ad2antrr 758 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → 𝑋𝐷)
120 dchrisum.n1 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋1 )
121120ad2antrr 758 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → 𝑋1 )
122 dchrisum.2 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑥𝐴 = 𝐵)
12370ad2antrr 758 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → 𝑀 ∈ ℕ)
124104r19.21bi 2916 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
125 simpll 786 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → 𝜑)
126 dchrisum.5 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
127125, 126syl3an1 1351 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
12866ad2antrr 758 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
1295, 7, 117, 4, 6, 118, 119, 121, 122, 123, 124, 127, 128, 31dchrisumlema 24977 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → ((if(𝑀𝑚, 𝑚, 𝑀) ∈ ℝ+if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴 ∈ ℝ) ∧ (if(𝑀𝑚, 𝑚, 𝑀) ∈ (𝑀[,)+∞) → 0 ≤ if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴)))
130129simprd 478 . . . . . . . . . . . . . . . 16 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → (if(𝑀𝑚, 𝑚, 𝑀) ∈ (𝑀[,)+∞) → 0 ≤ if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴))
131116, 130mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → 0 ≤ if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴)
132108, 131absidd 14009 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → (abs‘if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴) = if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴)
133111, 132eqtrd 2644 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → (abs‘(if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴 − 0)) = if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴)
134133breq1d 4593 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → ((abs‘(if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴 − 0)) < (𝑒 / ((2 · 𝑅) + 1)) ↔ if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴 < (𝑒 / ((2 · 𝑅) + 1))))
135 rpre 11715 . . . . . . . . . . . . . 14 (𝑒 ∈ ℝ+𝑒 ∈ ℝ)
136135ad2antlr 759 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → 𝑒 ∈ ℝ)
13763ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → ((2 · 𝑅) + 1) ∈ ℝ+)
138108, 136, 137ltmuldiv2d 11796 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → ((((2 · 𝑅) + 1) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴) < 𝑒if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴 < (𝑒 / ((2 · 𝑅) + 1))))
139134, 138bitr4d 270 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → ((abs‘(if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴 − 0)) < (𝑒 / ((2 · 𝑅) + 1)) ↔ (((2 · 𝑅) + 1) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴) < 𝑒))
14044ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → (2 · 𝑅) ∈ ℝ)
141137rpred 11748 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → ((2 · 𝑅) + 1) ∈ ℝ)
142140lep1d 10834 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → (2 · 𝑅) ≤ ((2 · 𝑅) + 1))
143140, 141, 108, 131, 142lemul1ad 10842 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → ((2 · 𝑅) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴) ≤ (((2 · 𝑅) + 1) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴))
144140, 108remulcld 9949 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → ((2 · 𝑅) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴) ∈ ℝ)
145141, 108remulcld 9949 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → (((2 · 𝑅) + 1) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴) ∈ ℝ)
146 lelttr 10007 . . . . . . . . . . . . 13 ((((2 · 𝑅) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴) ∈ ℝ ∧ (((2 · 𝑅) + 1) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴) ∈ ℝ ∧ 𝑒 ∈ ℝ) → ((((2 · 𝑅) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴) ≤ (((2 · 𝑅) + 1) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴) ∧ (((2 · 𝑅) + 1) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴) < 𝑒) → ((2 · 𝑅) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴) < 𝑒))
147144, 145, 136, 146syl3anc 1318 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → ((((2 · 𝑅) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴) ≤ (((2 · 𝑅) + 1) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴) ∧ (((2 · 𝑅) + 1) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴) < 𝑒) → ((2 · 𝑅) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴) < 𝑒))
148143, 147mpand 707 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → ((((2 · 𝑅) + 1) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴) < 𝑒 → ((2 · 𝑅) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴) < 𝑒))
149139, 148sylbid 229 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → ((abs‘(if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴 − 0)) < (𝑒 / ((2 · 𝑅) + 1)) → ((2 · 𝑅) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴) < 𝑒))
150 1red 9934 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℝ) → 1 ∈ ℝ)
15170adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℝ) → 𝑀 ∈ ℕ)
152151nnge1d 10940 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℝ) → 1 ≤ 𝑀)
153150, 72, 73, 152, 78letrd 10073 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℝ) → 1 ≤ if(𝑀𝑚, 𝑚, 𝑀))
154 flge1nn 12484 . . . . . . . . . . . . 13 ((if(𝑀𝑚, 𝑚, 𝑀) ∈ ℝ ∧ 1 ≤ if(𝑀𝑚, 𝑚, 𝑀)) → (⌊‘if(𝑀𝑚, 𝑚, 𝑀)) ∈ ℕ)
15573, 153, 154syl2anc 691 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℝ) → (⌊‘if(𝑀𝑚, 𝑚, 𝑀)) ∈ ℕ)
156155adantlr 747 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → (⌊‘if(𝑀𝑚, 𝑚, 𝑀)) ∈ ℕ)
15745ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) → 𝑁 ∈ ℕ)
1588ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) → 𝑋𝐷)
159120ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) → 𝑋1 )
16070ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) → 𝑀 ∈ ℕ)
16112adantlr 747 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℝ) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
162161adantlr 747 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
1631263adant1r 1311 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℝ) ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
1641633adant1r 1311 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
16566ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
16642ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) → 𝑅 ∈ ℝ)
16748ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛))) ≤ 𝑅)
16880adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) → if(𝑀𝑚, 𝑚, 𝑀) ∈ ℝ+)
16978adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) → 𝑀 ≤ if(𝑀𝑚, 𝑚, 𝑀))
17073adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) → if(𝑀𝑚, 𝑚, 𝑀) ∈ ℝ)
171 fllep1 12464 . . . . . . . . . . . . . . . 16 (if(𝑀𝑚, 𝑚, 𝑀) ∈ ℝ → if(𝑀𝑚, 𝑚, 𝑀) ≤ ((⌊‘if(𝑀𝑚, 𝑚, 𝑀)) + 1))
172170, 171syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) → if(𝑀𝑚, 𝑚, 𝑀) ≤ ((⌊‘if(𝑀𝑚, 𝑚, 𝑀)) + 1))
173155adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) → (⌊‘if(𝑀𝑚, 𝑚, 𝑀)) ∈ ℕ)
174 simpr 476 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) → 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀))))
1755, 7, 157, 4, 6, 118, 158, 159, 122, 160, 162, 164, 165, 31, 166, 167, 168, 169, 172, 173, 174dchrisumlem2 24979 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) → (abs‘((seq1( + , 𝐹)‘𝑘) − (seq1( + , 𝐹)‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀))))) ≤ ((2 · 𝑅) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴))
176175adantllr 751 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) → (abs‘((seq1( + , 𝐹)‘𝑘) − (seq1( + , 𝐹)‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀))))) ≤ ((2 · 𝑅) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴))
17735ad3antrrr 762 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) → seq1( + , 𝐹):ℕ⟶ℂ)
178 eluznn 11634 . . . . . . . . . . . . . . . . . 18 (((⌊‘if(𝑀𝑚, 𝑚, 𝑀)) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) → 𝑘 ∈ ℕ)
179156, 178sylan 487 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) → 𝑘 ∈ ℕ)
180177, 179ffvelrnd 6268 . . . . . . . . . . . . . . . 16 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) → (seq1( + , 𝐹)‘𝑘) ∈ ℂ)
181156adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) → (⌊‘if(𝑀𝑚, 𝑚, 𝑀)) ∈ ℕ)
182177, 181ffvelrnd 6268 . . . . . . . . . . . . . . . 16 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) → (seq1( + , 𝐹)‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀))) ∈ ℂ)
183180, 182subcld 10271 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) → ((seq1( + , 𝐹)‘𝑘) − (seq1( + , 𝐹)‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) ∈ ℂ)
184183abscld 14023 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) → (abs‘((seq1( + , 𝐹)‘𝑘) − (seq1( + , 𝐹)‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀))))) ∈ ℝ)
185144adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) → ((2 · 𝑅) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴) ∈ ℝ)
186136adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) → 𝑒 ∈ ℝ)
187 lelttr 10007 . . . . . . . . . . . . . 14 (((abs‘((seq1( + , 𝐹)‘𝑘) − (seq1( + , 𝐹)‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀))))) ∈ ℝ ∧ ((2 · 𝑅) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴) ∈ ℝ ∧ 𝑒 ∈ ℝ) → (((abs‘((seq1( + , 𝐹)‘𝑘) − (seq1( + , 𝐹)‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀))))) ≤ ((2 · 𝑅) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴) ∧ ((2 · 𝑅) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴) < 𝑒) → (abs‘((seq1( + , 𝐹)‘𝑘) − (seq1( + , 𝐹)‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀))))) < 𝑒))
188184, 185, 186, 187syl3anc 1318 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) → (((abs‘((seq1( + , 𝐹)‘𝑘) − (seq1( + , 𝐹)‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀))))) ≤ ((2 · 𝑅) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴) ∧ ((2 · 𝑅) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴) < 𝑒) → (abs‘((seq1( + , 𝐹)‘𝑘) − (seq1( + , 𝐹)‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀))))) < 𝑒))
189176, 188mpand 707 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))) → (((2 · 𝑅) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴) < 𝑒 → (abs‘((seq1( + , 𝐹)‘𝑘) − (seq1( + , 𝐹)‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀))))) < 𝑒))
190189ralrimdva 2952 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → (((2 · 𝑅) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴) < 𝑒 → ∀𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))(abs‘((seq1( + , 𝐹)‘𝑘) − (seq1( + , 𝐹)‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀))))) < 𝑒))
191 fveq2 6103 . . . . . . . . . . . . 13 (𝑗 = (⌊‘if(𝑀𝑚, 𝑚, 𝑀)) → (ℤ𝑗) = (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀))))
192 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑗 = (⌊‘if(𝑀𝑚, 𝑚, 𝑀)) → (seq1( + , 𝐹)‘𝑗) = (seq1( + , 𝐹)‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀))))
193192oveq2d 6565 . . . . . . . . . . . . . . 15 (𝑗 = (⌊‘if(𝑀𝑚, 𝑚, 𝑀)) → ((seq1( + , 𝐹)‘𝑘) − (seq1( + , 𝐹)‘𝑗)) = ((seq1( + , 𝐹)‘𝑘) − (seq1( + , 𝐹)‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))))
194193fveq2d 6107 . . . . . . . . . . . . . 14 (𝑗 = (⌊‘if(𝑀𝑚, 𝑚, 𝑀)) → (abs‘((seq1( + , 𝐹)‘𝑘) − (seq1( + , 𝐹)‘𝑗))) = (abs‘((seq1( + , 𝐹)‘𝑘) − (seq1( + , 𝐹)‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀))))))
195194breq1d 4593 . . . . . . . . . . . . 13 (𝑗 = (⌊‘if(𝑀𝑚, 𝑚, 𝑀)) → ((abs‘((seq1( + , 𝐹)‘𝑘) − (seq1( + , 𝐹)‘𝑗))) < 𝑒 ↔ (abs‘((seq1( + , 𝐹)‘𝑘) − (seq1( + , 𝐹)‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀))))) < 𝑒))
196191, 195raleqbidv 3129 . . . . . . . . . . . 12 (𝑗 = (⌊‘if(𝑀𝑚, 𝑚, 𝑀)) → (∀𝑘 ∈ (ℤ𝑗)(abs‘((seq1( + , 𝐹)‘𝑘) − (seq1( + , 𝐹)‘𝑗))) < 𝑒 ↔ ∀𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))(abs‘((seq1( + , 𝐹)‘𝑘) − (seq1( + , 𝐹)‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀))))) < 𝑒))
197196rspcev 3282 . . . . . . . . . . 11 (((⌊‘if(𝑀𝑚, 𝑚, 𝑀)) ∈ ℕ ∧ ∀𝑘 ∈ (ℤ‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀)))(abs‘((seq1( + , 𝐹)‘𝑘) − (seq1( + , 𝐹)‘(⌊‘if(𝑀𝑚, 𝑚, 𝑀))))) < 𝑒) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘((seq1( + , 𝐹)‘𝑘) − (seq1( + , 𝐹)‘𝑗))) < 𝑒)
198156, 190, 197syl6an 566 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → (((2 · 𝑅) · if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴) < 𝑒 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘((seq1( + , 𝐹)‘𝑘) − (seq1( + , 𝐹)‘𝑗))) < 𝑒))
199149, 198syld 46 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → ((abs‘(if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴 − 0)) < (𝑒 / ((2 · 𝑅) + 1)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘((seq1( + , 𝐹)‘𝑘) − (seq1( + , 𝐹)‘𝑗))) < 𝑒))
200103, 199embantd 57 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → ((𝑚 ≤ if(𝑀𝑚, 𝑚, 𝑀) → (abs‘(if(𝑀𝑚, 𝑚, 𝑀) / 𝑛𝐴 − 0)) < (𝑒 / ((2 · 𝑅) + 1))) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘((seq1( + , 𝐹)‘𝑘) − (seq1( + , 𝐹)‘𝑗))) < 𝑒))
201100, 200syld 46 . . . . . . 7 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑚 ∈ ℝ) → (∀𝑛 ∈ ℝ+ (𝑚𝑛 → (abs‘(𝐴 − 0)) < (𝑒 / ((2 · 𝑅) + 1))) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘((seq1( + , 𝐹)‘𝑘) − (seq1( + , 𝐹)‘𝑗))) < 𝑒))
202201rexlimdva 3013 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → (∃𝑚 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑚𝑛 → (abs‘(𝐴 − 0)) < (𝑒 / ((2 · 𝑅) + 1))) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘((seq1( + , 𝐹)‘𝑘) − (seq1( + , 𝐹)‘𝑗))) < 𝑒))
20368, 202mpd 15 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘((seq1( + , 𝐹)‘𝑘) − (seq1( + , 𝐹)‘𝑗))) < 𝑒)
204203ralrimiva 2949 . . . 4 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘((seq1( + , 𝐹)‘𝑘) − (seq1( + , 𝐹)‘𝑗))) < 𝑒)
205 seqex 12665 . . . . 5 seq1( + , 𝐹) ∈ V
206205a1i 11 . . . 4 (𝜑 → seq1( + , 𝐹) ∈ V)
2071, 36, 204, 206caucvg 14257 . . 3 (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
208205eldm 5243 . . 3 (seq1( + , 𝐹) ∈ dom ⇝ ↔ ∃𝑡seq1( + , 𝐹) ⇝ 𝑡)
209207, 208sylib 207 . 2 (𝜑 → ∃𝑡seq1( + , 𝐹) ⇝ 𝑡)
210 simpr 476 . . . . 5 ((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) → seq1( + , 𝐹) ⇝ 𝑡)
211 elrege0 12149 . . . . . . . 8 ((2 · 𝑅) ∈ (0[,)+∞) ↔ ((2 · 𝑅) ∈ ℝ ∧ 0 ≤ (2 · 𝑅)))
21244, 62, 211sylanbrc 695 . . . . . . 7 (𝜑 → (2 · 𝑅) ∈ (0[,)+∞))
213212adantr 480 . . . . . 6 ((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) → (2 · 𝑅) ∈ (0[,)+∞))
214 eqid 2610 . . . . . . . 8 (ℤ‘(⌊‘𝑚)) = (ℤ‘(⌊‘𝑚))
215 pnfxr 9971 . . . . . . . . . . . 12 +∞ ∈ ℝ*
216 icossre 12125 . . . . . . . . . . . 12 ((𝑀 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑀[,)+∞) ⊆ ℝ)
21771, 215, 216sylancl 693 . . . . . . . . . . 11 (𝜑 → (𝑀[,)+∞) ⊆ ℝ)
218217sselda 3568 . . . . . . . . . 10 ((𝜑𝑚 ∈ (𝑀[,)+∞)) → 𝑚 ∈ ℝ)
219218adantlr 747 . . . . . . . . 9 (((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) → 𝑚 ∈ ℝ)
220219flcld 12461 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) → (⌊‘𝑚) ∈ ℤ)
221 simplr 788 . . . . . . . . . 10 (((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) → seq1( + , 𝐹) ⇝ 𝑡)
22235ad2antrr 758 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) → seq1( + , 𝐹):ℕ⟶ℂ)
223 1red 9934 . . . . . . . . . . . . 13 (((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) → 1 ∈ ℝ)
22471ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) → 𝑀 ∈ ℝ)
22570ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) → 𝑀 ∈ ℕ)
226225nnge1d 10940 . . . . . . . . . . . . 13 (((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) → 1 ≤ 𝑀)
227 elicopnf 12140 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℝ → (𝑚 ∈ (𝑀[,)+∞) ↔ (𝑚 ∈ ℝ ∧ 𝑀𝑚)))
22871, 227syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑚 ∈ (𝑀[,)+∞) ↔ (𝑚 ∈ ℝ ∧ 𝑀𝑚)))
229228simplbda 652 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (𝑀[,)+∞)) → 𝑀𝑚)
230229adantlr 747 . . . . . . . . . . . . 13 (((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) → 𝑀𝑚)
231223, 224, 219, 226, 230letrd 10073 . . . . . . . . . . . 12 (((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) → 1 ≤ 𝑚)
232 flge1nn 12484 . . . . . . . . . . . 12 ((𝑚 ∈ ℝ ∧ 1 ≤ 𝑚) → (⌊‘𝑚) ∈ ℕ)
233219, 231, 232syl2anc 691 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) → (⌊‘𝑚) ∈ ℕ)
234222, 233ffvelrnd 6268 . . . . . . . . . 10 (((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) → (seq1( + , 𝐹)‘(⌊‘𝑚)) ∈ ℂ)
235 nnex 10903 . . . . . . . . . . . 12 ℕ ∈ V
236235mptex 6390 . . . . . . . . . . 11 (𝑘 ∈ ℕ ↦ ((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑘))) ∈ V
237236a1i 11 . . . . . . . . . 10 (((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) → (𝑘 ∈ ℕ ↦ ((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑘))) ∈ V)
238222adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → seq1( + , 𝐹):ℕ⟶ℂ)
239 eluznn 11634 . . . . . . . . . . . 12 (((⌊‘𝑚) ∈ ℕ ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → 𝑖 ∈ ℕ)
240233, 239sylan 487 . . . . . . . . . . 11 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → 𝑖 ∈ ℕ)
241238, 240ffvelrnd 6268 . . . . . . . . . 10 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → (seq1( + , 𝐹)‘𝑖) ∈ ℂ)
242 fveq2 6103 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (seq1( + , 𝐹)‘𝑘) = (seq1( + , 𝐹)‘𝑖))
243242oveq2d 6565 . . . . . . . . . . . 12 (𝑘 = 𝑖 → ((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑘)) = ((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑖)))
244 eqid 2610 . . . . . . . . . . . 12 (𝑘 ∈ ℕ ↦ ((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑘))) = (𝑘 ∈ ℕ ↦ ((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑘)))
245 ovex 6577 . . . . . . . . . . . 12 ((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑘)) ∈ V
246243, 244, 245fvmpt3i 6196 . . . . . . . . . . 11 (𝑖 ∈ ℕ → ((𝑘 ∈ ℕ ↦ ((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑘)))‘𝑖) = ((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑖)))
247240, 246syl 17 . . . . . . . . . 10 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → ((𝑘 ∈ ℕ ↦ ((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑘)))‘𝑖) = ((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑖)))
248214, 220, 221, 234, 237, 241, 247climsubc2 14217 . . . . . . . . 9 (((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) → (𝑘 ∈ ℕ ↦ ((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑘))) ⇝ ((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑡))
249235mptex 6390 . . . . . . . . . 10 (𝑘 ∈ ℕ ↦ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑘)))) ∈ V
250249a1i 11 . . . . . . . . 9 (((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) → (𝑘 ∈ ℕ ↦ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑘)))) ∈ V)
251 fvex 6113 . . . . . . . . . . . . . 14 (seq1( + , 𝐹)‘(⌊‘𝑚)) ∈ V
252251fvconst2 6374 . . . . . . . . . . . . 13 (𝑖 ∈ ℕ → ((ℕ × {(seq1( + , 𝐹)‘(⌊‘𝑚))})‘𝑖) = (seq1( + , 𝐹)‘(⌊‘𝑚)))
253240, 252syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → ((ℕ × {(seq1( + , 𝐹)‘(⌊‘𝑚))})‘𝑖) = (seq1( + , 𝐹)‘(⌊‘𝑚)))
254253oveq1d 6564 . . . . . . . . . . 11 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → (((ℕ × {(seq1( + , 𝐹)‘(⌊‘𝑚))})‘𝑖) − (seq1( + , 𝐹)‘𝑖)) = ((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑖)))
255247, 254eqtr4d 2647 . . . . . . . . . 10 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → ((𝑘 ∈ ℕ ↦ ((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑘)))‘𝑖) = (((ℕ × {(seq1( + , 𝐹)‘(⌊‘𝑚))})‘𝑖) − (seq1( + , 𝐹)‘𝑖)))
256234adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → (seq1( + , 𝐹)‘(⌊‘𝑚)) ∈ ℂ)
257253, 256eqeltrd 2688 . . . . . . . . . . 11 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → ((ℕ × {(seq1( + , 𝐹)‘(⌊‘𝑚))})‘𝑖) ∈ ℂ)
258257, 241subcld 10271 . . . . . . . . . 10 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → (((ℕ × {(seq1( + , 𝐹)‘(⌊‘𝑚))})‘𝑖) − (seq1( + , 𝐹)‘𝑖)) ∈ ℂ)
259255, 258eqeltrd 2688 . . . . . . . . 9 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → ((𝑘 ∈ ℕ ↦ ((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑘)))‘𝑖) ∈ ℂ)
260243fveq2d 6107 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑘))) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑖))))
261 eqid 2610 . . . . . . . . . . . 12 (𝑘 ∈ ℕ ↦ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑘)))) = (𝑘 ∈ ℕ ↦ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑘))))
262 fvex 6113 . . . . . . . . . . . 12 (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑘))) ∈ V
263260, 261, 262fvmpt3i 6196 . . . . . . . . . . 11 (𝑖 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑘))))‘𝑖) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑖))))
264240, 263syl 17 . . . . . . . . . 10 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → ((𝑘 ∈ ℕ ↦ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑘))))‘𝑖) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑖))))
265247fveq2d 6107 . . . . . . . . . 10 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → (abs‘((𝑘 ∈ ℕ ↦ ((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑘)))‘𝑖)) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑖))))
266264, 265eqtr4d 2647 . . . . . . . . 9 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → ((𝑘 ∈ ℕ ↦ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑘))))‘𝑖) = (abs‘((𝑘 ∈ ℕ ↦ ((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑘)))‘𝑖)))
267214, 248, 250, 220, 259, 266climabs 14182 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) → (𝑘 ∈ ℕ ↦ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑘)))) ⇝ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑡)))
26844ad2antrr 758 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) → (2 · 𝑅) ∈ ℝ)
269 0red 9920 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (𝑀[,)+∞)) → 0 ∈ ℝ)
27071adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (𝑀[,)+∞)) → 𝑀 ∈ ℝ)
27175adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (𝑀[,)+∞)) → 0 < 𝑀)
272269, 270, 218, 271, 229ltletrd 10076 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (𝑀[,)+∞)) → 0 < 𝑚)
273218, 272elrpd 11745 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (𝑀[,)+∞)) → 𝑚 ∈ ℝ+)
274 nfcsb1v 3515 . . . . . . . . . . . . . . . 16 𝑛𝑚 / 𝑛𝐴
275274nfel1 2765 . . . . . . . . . . . . . . 15 𝑛𝑚 / 𝑛𝐴 ∈ ℝ
276 csbeq1a 3508 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
277276eleq1d 2672 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐴 ∈ ℝ ↔ 𝑚 / 𝑛𝐴 ∈ ℝ))
278275, 277rspc 3276 . . . . . . . . . . . . . 14 (𝑚 ∈ ℝ+ → (∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ → 𝑚 / 𝑛𝐴 ∈ ℝ))
27913, 278mpan9 485 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℝ+) → 𝑚 / 𝑛𝐴 ∈ ℝ)
280273, 279syldan 486 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (𝑀[,)+∞)) → 𝑚 / 𝑛𝐴 ∈ ℝ)
281280adantlr 747 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) → 𝑚 / 𝑛𝐴 ∈ ℝ)
282268, 281remulcld 9949 . . . . . . . . . 10 (((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) → ((2 · 𝑅) · 𝑚 / 𝑛𝐴) ∈ ℝ)
283282recnd 9947 . . . . . . . . 9 (((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) → ((2 · 𝑅) · 𝑚 / 𝑛𝐴) ∈ ℂ)
284 1z 11284 . . . . . . . . 9 1 ∈ ℤ
2851eqimss2i 3623 . . . . . . . . . 10 (ℤ‘1) ⊆ ℕ
286285, 235climconst2 14127 . . . . . . . . 9 ((((2 · 𝑅) · 𝑚 / 𝑛𝐴) ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {((2 · 𝑅) · 𝑚 / 𝑛𝐴)}) ⇝ ((2 · 𝑅) · 𝑚 / 𝑛𝐴))
287283, 284, 286sylancl 693 . . . . . . . 8 (((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) → (ℕ × {((2 · 𝑅) · 𝑚 / 𝑛𝐴)}) ⇝ ((2 · 𝑅) · 𝑚 / 𝑛𝐴))
288256, 241subcld 10271 . . . . . . . . . 10 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → ((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑖)) ∈ ℂ)
289288abscld 14023 . . . . . . . . 9 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑖))) ∈ ℝ)
290264, 289eqeltrd 2688 . . . . . . . 8 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → ((𝑘 ∈ ℕ ↦ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑘))))‘𝑖) ∈ ℝ)
291 ovex 6577 . . . . . . . . . . 11 ((2 · 𝑅) · 𝑚 / 𝑛𝐴) ∈ V
292291fvconst2 6374 . . . . . . . . . 10 (𝑖 ∈ ℕ → ((ℕ × {((2 · 𝑅) · 𝑚 / 𝑛𝐴)})‘𝑖) = ((2 · 𝑅) · 𝑚 / 𝑛𝐴))
293240, 292syl 17 . . . . . . . . 9 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → ((ℕ × {((2 · 𝑅) · 𝑚 / 𝑛𝐴)})‘𝑖) = ((2 · 𝑅) · 𝑚 / 𝑛𝐴))
294282adantr 480 . . . . . . . . 9 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → ((2 · 𝑅) · 𝑚 / 𝑛𝐴) ∈ ℝ)
295293, 294eqeltrd 2688 . . . . . . . 8 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → ((ℕ × {((2 · 𝑅) · 𝑚 / 𝑛𝐴)})‘𝑖) ∈ ℝ)
296 simplll 794 . . . . . . . . . . 11 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → 𝜑)
297296, 45syl 17 . . . . . . . . . 10 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → 𝑁 ∈ ℕ)
298296, 8syl 17 . . . . . . . . . 10 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → 𝑋𝐷)
299296, 120syl 17 . . . . . . . . . 10 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → 𝑋1 )
300225adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → 𝑀 ∈ ℕ)
301296, 12sylan 487 . . . . . . . . . 10 (((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
302296, 126syl3an1 1351 . . . . . . . . . 10 (((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
303296, 66syl 17 . . . . . . . . . 10 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
304296, 42syl 17 . . . . . . . . . 10 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → 𝑅 ∈ ℝ)
305296, 48syl 17 . . . . . . . . . 10 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛))) ≤ 𝑅)
306273adantlr 747 . . . . . . . . . . 11 (((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) → 𝑚 ∈ ℝ+)
307306adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → 𝑚 ∈ ℝ+)
308230adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → 𝑀𝑚)
309219adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → 𝑚 ∈ ℝ)
310 reflcl 12459 . . . . . . . . . . . 12 (𝑚 ∈ ℝ → (⌊‘𝑚) ∈ ℝ)
311 peano2re 10088 . . . . . . . . . . . 12 ((⌊‘𝑚) ∈ ℝ → ((⌊‘𝑚) + 1) ∈ ℝ)
312309, 310, 3113syl 18 . . . . . . . . . . 11 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → ((⌊‘𝑚) + 1) ∈ ℝ)
313 flltp1 12463 . . . . . . . . . . . 12 (𝑚 ∈ ℝ → 𝑚 < ((⌊‘𝑚) + 1))
314309, 313syl 17 . . . . . . . . . . 11 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → 𝑚 < ((⌊‘𝑚) + 1))
315309, 312, 314ltled 10064 . . . . . . . . . 10 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → 𝑚 ≤ ((⌊‘𝑚) + 1))
316233adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → (⌊‘𝑚) ∈ ℕ)
317 simpr 476 . . . . . . . . . 10 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → 𝑖 ∈ (ℤ‘(⌊‘𝑚)))
3185, 7, 297, 4, 6, 118, 298, 299, 122, 300, 301, 302, 303, 31, 304, 305, 307, 308, 315, 316, 317dchrisumlem2 24979 . . . . . . . . 9 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → (abs‘((seq1( + , 𝐹)‘𝑖) − (seq1( + , 𝐹)‘(⌊‘𝑚)))) ≤ ((2 · 𝑅) · 𝑚 / 𝑛𝐴))
319256, 241abssubd 14040 . . . . . . . . . 10 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑖))) = (abs‘((seq1( + , 𝐹)‘𝑖) − (seq1( + , 𝐹)‘(⌊‘𝑚)))))
320264, 319eqtrd 2644 . . . . . . . . 9 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → ((𝑘 ∈ ℕ ↦ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑘))))‘𝑖) = (abs‘((seq1( + , 𝐹)‘𝑖) − (seq1( + , 𝐹)‘(⌊‘𝑚)))))
321318, 320, 2933brtr4d 4615 . . . . . . . 8 ((((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘(⌊‘𝑚))) → ((𝑘 ∈ ℕ ↦ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − (seq1( + , 𝐹)‘𝑘))))‘𝑖) ≤ ((ℕ × {((2 · 𝑅) · 𝑚 / 𝑛𝐴)})‘𝑖))
322214, 220, 267, 287, 290, 295, 321climle 14218 . . . . . . 7 (((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) ∧ 𝑚 ∈ (𝑀[,)+∞)) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑡)) ≤ ((2 · 𝑅) · 𝑚 / 𝑛𝐴))
323322ralrimiva 2949 . . . . . 6 ((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) → ∀𝑚 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑡)) ≤ ((2 · 𝑅) · 𝑚 / 𝑛𝐴))
324 oveq1 6556 . . . . . . . . . 10 (𝑐 = (2 · 𝑅) → (𝑐 · 𝐵) = ((2 · 𝑅) · 𝐵))
325324breq2d 4595 . . . . . . . . 9 (𝑐 = (2 · 𝑅) → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ ((2 · 𝑅) · 𝐵)))
326325ralbidv 2969 . . . . . . . 8 (𝑐 = (2 · 𝑅) → (∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵) ↔ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ ((2 · 𝑅) · 𝐵)))
327 fveq2 6103 . . . . . . . . . . . . 13 (𝑚 = 𝑥 → (⌊‘𝑚) = (⌊‘𝑥))
328327fveq2d 6107 . . . . . . . . . . . 12 (𝑚 = 𝑥 → (seq1( + , 𝐹)‘(⌊‘𝑚)) = (seq1( + , 𝐹)‘(⌊‘𝑥)))
329328oveq1d 6564 . . . . . . . . . . 11 (𝑚 = 𝑥 → ((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑡) = ((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡))
330329fveq2d 6107 . . . . . . . . . 10 (𝑚 = 𝑥 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑡)) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)))
331 vex 3176 . . . . . . . . . . . . 13 𝑚 ∈ V
332331a1i 11 . . . . . . . . . . . 12 (𝑚 = 𝑥𝑚 ∈ V)
333 equequ2 1940 . . . . . . . . . . . . . 14 (𝑚 = 𝑥 → (𝑛 = 𝑚𝑛 = 𝑥))
334333biimpa 500 . . . . . . . . . . . . 13 ((𝑚 = 𝑥𝑛 = 𝑚) → 𝑛 = 𝑥)
335334, 122syl 17 . . . . . . . . . . . 12 ((𝑚 = 𝑥𝑛 = 𝑚) → 𝐴 = 𝐵)
336332, 335csbied 3526 . . . . . . . . . . 11 (𝑚 = 𝑥𝑚 / 𝑛𝐴 = 𝐵)
337336oveq2d 6565 . . . . . . . . . 10 (𝑚 = 𝑥 → ((2 · 𝑅) · 𝑚 / 𝑛𝐴) = ((2 · 𝑅) · 𝐵))
338330, 337breq12d 4596 . . . . . . . . 9 (𝑚 = 𝑥 → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑡)) ≤ ((2 · 𝑅) · 𝑚 / 𝑛𝐴) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ ((2 · 𝑅) · 𝐵)))
339338cbvralv 3147 . . . . . . . 8 (∀𝑚 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑡)) ≤ ((2 · 𝑅) · 𝑚 / 𝑛𝐴) ↔ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ ((2 · 𝑅) · 𝐵))
340326, 339syl6bbr 277 . . . . . . 7 (𝑐 = (2 · 𝑅) → (∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵) ↔ ∀𝑚 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑡)) ≤ ((2 · 𝑅) · 𝑚 / 𝑛𝐴)))
341340rspcev 3282 . . . . . 6 (((2 · 𝑅) ∈ (0[,)+∞) ∧ ∀𝑚 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑚)) − 𝑡)) ≤ ((2 · 𝑅) · 𝑚 / 𝑛𝐴)) → ∃𝑐 ∈ (0[,)+∞)∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵))
342213, 323, 341syl2anc 691 . . . . 5 ((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) → ∃𝑐 ∈ (0[,)+∞)∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵))
343 r19.42v 3073 . . . . 5 (∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵)) ↔ (seq1( + , 𝐹) ⇝ 𝑡 ∧ ∃𝑐 ∈ (0[,)+∞)∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵)))
344210, 342, 343sylanbrc 695 . . . 4 ((𝜑 ∧ seq1( + , 𝐹) ⇝ 𝑡) → ∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵)))
345344ex 449 . . 3 (𝜑 → (seq1( + , 𝐹) ⇝ 𝑡 → ∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵))))
346345eximdv 1833 . 2 (𝜑 → (∃𝑡seq1( + , 𝐹) ⇝ 𝑡 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵))))
347209, 346mpd 15 1 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  csb 3499  wss 3540  c0 3874  ifcif 4036  {csn 4125   class class class wbr 4583  cmpt 4643   × cxp 5036  dom cdm 5038  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  cz 11254  cuz 11563  +crp 11708  [,)cico 12048  ..^cfzo 12334  cfl 12453  seqcseq 12663  abscabs 13822  cli 14063  𝑟 crli 14064  Σcsu 14264  Basecbs 15695  0gc0g 15923  ℤRHomczrh 19667  ℤ/nczn 19670  DChrcdchr 24757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-ico 12052  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-dvds 14822  df-gcd 15055  df-phi 15309  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-imas 15991  df-qus 15992  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-nsg 17415  df-eqg 17416  df-ghm 17481  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-rnghom 18538  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lsp 18793  df-sra 18993  df-rgmod 18994  df-lidl 18995  df-rsp 18996  df-2idl 19053  df-cnfld 19568  df-zring 19638  df-zrh 19671  df-zn 19674  df-dchr 24758
This theorem is referenced by:  dchrisum  24981
  Copyright terms: Public domain W3C validator