Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cytpval Structured version   Visualization version   GIF version

Theorem cytpval 36806
Description: Substitutions for the Nth cyclotomic polynomial. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
cytpval.t 𝑇 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
cytpval.o 𝑂 = (od‘𝑇)
cytpval.p 𝑃 = (Poly1‘ℂfld)
cytpval.x 𝑋 = (var1‘ℂfld)
cytpval.q 𝑄 = (mulGrp‘𝑃)
cytpval.m = (-g𝑃)
cytpval.a 𝐴 = (algSc‘𝑃)
Assertion
Ref Expression
cytpval (𝑁 ∈ ℕ → (CytP‘𝑁) = (𝑄 Σg (𝑟 ∈ (𝑂 “ {𝑁}) ↦ (𝑋 (𝐴𝑟)))))
Distinct variable group:   𝑁,𝑟
Allowed substitution hints:   𝐴(𝑟)   𝑃(𝑟)   𝑄(𝑟)   𝑇(𝑟)   (𝑟)   𝑂(𝑟)   𝑋(𝑟)

Proof of Theorem cytpval
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 cytpval.p . . . . . . 7 𝑃 = (Poly1‘ℂfld)
21eqcomi 2619 . . . . . 6 (Poly1‘ℂfld) = 𝑃
32fveq2i 6106 . . . . 5 (mulGrp‘(Poly1‘ℂfld)) = (mulGrp‘𝑃)
4 cytpval.q . . . . 5 𝑄 = (mulGrp‘𝑃)
53, 4eqtr4i 2635 . . . 4 (mulGrp‘(Poly1‘ℂfld)) = 𝑄
65a1i 11 . . 3 (𝑛 = 𝑁 → (mulGrp‘(Poly1‘ℂfld)) = 𝑄)
7 cytpval.o . . . . . . . 8 𝑂 = (od‘𝑇)
8 cytpval.t . . . . . . . . 9 𝑇 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
98fveq2i 6106 . . . . . . . 8 (od‘𝑇) = (od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
107, 9eqtri 2632 . . . . . . 7 𝑂 = (od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
1110cnveqi 5219 . . . . . 6 𝑂 = (od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
1211imaeq1i 5382 . . . . 5 (𝑂 “ {𝑛}) = ((od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) “ {𝑛})
13 sneq 4135 . . . . . 6 (𝑛 = 𝑁 → {𝑛} = {𝑁})
1413imaeq2d 5385 . . . . 5 (𝑛 = 𝑁 → (𝑂 “ {𝑛}) = (𝑂 “ {𝑁}))
1512, 14syl5eqr 2658 . . . 4 (𝑛 = 𝑁 → ((od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) “ {𝑛}) = (𝑂 “ {𝑁}))
16 cytpval.x . . . . . . 7 𝑋 = (var1‘ℂfld)
17 cytpval.a . . . . . . . . 9 𝐴 = (algSc‘𝑃)
181fveq2i 6106 . . . . . . . . 9 (algSc‘𝑃) = (algSc‘(Poly1‘ℂfld))
1917, 18eqtri 2632 . . . . . . . 8 𝐴 = (algSc‘(Poly1‘ℂfld))
2019fveq1i 6104 . . . . . . 7 (𝐴𝑟) = ((algSc‘(Poly1‘ℂfld))‘𝑟)
21 cytpval.m . . . . . . . 8 = (-g𝑃)
221fveq2i 6106 . . . . . . . 8 (-g𝑃) = (-g‘(Poly1‘ℂfld))
2321, 22eqtri 2632 . . . . . . 7 = (-g‘(Poly1‘ℂfld))
2416, 20, 23oveq123i 6563 . . . . . 6 (𝑋 (𝐴𝑟)) = ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟))
2524eqcomi 2619 . . . . 5 ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟)) = (𝑋 (𝐴𝑟))
2625a1i 11 . . . 4 (𝑛 = 𝑁 → ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟)) = (𝑋 (𝐴𝑟)))
2715, 26mpteq12dv 4663 . . 3 (𝑛 = 𝑁 → (𝑟 ∈ ((od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) “ {𝑛}) ↦ ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟))) = (𝑟 ∈ (𝑂 “ {𝑁}) ↦ (𝑋 (𝐴𝑟))))
286, 27oveq12d 6567 . 2 (𝑛 = 𝑁 → ((mulGrp‘(Poly1‘ℂfld)) Σg (𝑟 ∈ ((od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) “ {𝑛}) ↦ ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟)))) = (𝑄 Σg (𝑟 ∈ (𝑂 “ {𝑁}) ↦ (𝑋 (𝐴𝑟)))))
29 df-cytp 36800 . 2 CytP = (𝑛 ∈ ℕ ↦ ((mulGrp‘(Poly1‘ℂfld)) Σg (𝑟 ∈ ((od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) “ {𝑛}) ↦ ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟)))))
30 ovex 6577 . 2 (𝑄 Σg (𝑟 ∈ (𝑂 “ {𝑁}) ↦ (𝑋 (𝐴𝑟)))) ∈ V
3128, 29, 30fvmpt 6191 1 (𝑁 ∈ ℕ → (CytP‘𝑁) = (𝑄 Σg (𝑟 ∈ (𝑂 “ {𝑁}) ↦ (𝑋 (𝐴𝑟)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  cdif 3537  {csn 4125  cmpt 4643  ccnv 5037  cima 5041  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  cn 10897  s cress 15696   Σg cgsu 15924  -gcsg 17247  odcod 17767  mulGrpcmgp 18312  algSccascl 19132  var1cv1 19367  Poly1cpl1 19368  fldccnfld 19567  CytPccytp 36799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-cytp 36800
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator