Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmscbv Structured version   Visualization version   GIF version

Theorem cvmscbv 30494
Description: Change bound variables in the set of even coverings. (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypothesis
Ref Expression
iscvm.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
Assertion
Ref Expression
cvmscbv 𝑆 = (𝑎𝐽 ↦ {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑏 = (𝐹𝑎) ∧ ∀𝑐𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑎))))})
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑,𝑘,𝑠,𝑢,𝑣   𝐶,𝑎,𝑏,𝑐,𝑘,𝑠,𝑢   𝐹,𝑎,𝑏,𝑐,𝑘,𝑠,𝑢   𝐽,𝑎,𝑏,𝑐,𝑘,𝑠,𝑢
Allowed substitution hints:   𝐶(𝑣,𝑑)   𝑆(𝑣,𝑢,𝑘,𝑠,𝑎,𝑏,𝑐,𝑑)   𝐹(𝑣,𝑑)   𝐽(𝑣,𝑑)

Proof of Theorem cvmscbv
StepHypRef Expression
1 iscvm.1 . 2 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
2 unieq 4380 . . . . . . 7 (𝑠 = 𝑏 𝑠 = 𝑏)
32eqeq1d 2612 . . . . . 6 (𝑠 = 𝑏 → ( 𝑠 = (𝐹𝑘) ↔ 𝑏 = (𝐹𝑘)))
4 ineq2 3770 . . . . . . . . . . . 12 (𝑣 = 𝑑 → (𝑢𝑣) = (𝑢𝑑))
54eqeq1d 2612 . . . . . . . . . . 11 (𝑣 = 𝑑 → ((𝑢𝑣) = ∅ ↔ (𝑢𝑑) = ∅))
65cbvralv 3147 . . . . . . . . . 10 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ↔ ∀𝑑 ∈ (𝑠 ∖ {𝑢})(𝑢𝑑) = ∅)
7 sneq 4135 . . . . . . . . . . . 12 (𝑢 = 𝑐 → {𝑢} = {𝑐})
87difeq2d 3690 . . . . . . . . . . 11 (𝑢 = 𝑐 → (𝑠 ∖ {𝑢}) = (𝑠 ∖ {𝑐}))
9 ineq1 3769 . . . . . . . . . . . 12 (𝑢 = 𝑐 → (𝑢𝑑) = (𝑐𝑑))
109eqeq1d 2612 . . . . . . . . . . 11 (𝑢 = 𝑐 → ((𝑢𝑑) = ∅ ↔ (𝑐𝑑) = ∅))
118, 10raleqbidv 3129 . . . . . . . . . 10 (𝑢 = 𝑐 → (∀𝑑 ∈ (𝑠 ∖ {𝑢})(𝑢𝑑) = ∅ ↔ ∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅))
126, 11syl5bb 271 . . . . . . . . 9 (𝑢 = 𝑐 → (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ↔ ∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅))
13 reseq2 5312 . . . . . . . . . 10 (𝑢 = 𝑐 → (𝐹𝑢) = (𝐹𝑐))
14 oveq2 6557 . . . . . . . . . . 11 (𝑢 = 𝑐 → (𝐶t 𝑢) = (𝐶t 𝑐))
1514oveq1d 6564 . . . . . . . . . 10 (𝑢 = 𝑐 → ((𝐶t 𝑢)Homeo(𝐽t 𝑘)) = ((𝐶t 𝑐)Homeo(𝐽t 𝑘)))
1613, 15eleq12d 2682 . . . . . . . . 9 (𝑢 = 𝑐 → ((𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)) ↔ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))
1712, 16anbi12d 743 . . . . . . . 8 (𝑢 = 𝑐 → ((∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))) ↔ (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘)))))
1817cbvralv 3147 . . . . . . 7 (∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))) ↔ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))
19 difeq1 3683 . . . . . . . . . 10 (𝑠 = 𝑏 → (𝑠 ∖ {𝑐}) = (𝑏 ∖ {𝑐}))
2019raleqdv 3121 . . . . . . . . 9 (𝑠 = 𝑏 → (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ↔ ∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅))
2120anbi1d 737 . . . . . . . 8 (𝑠 = 𝑏 → ((∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))) ↔ (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘)))))
2221raleqbi1dv 3123 . . . . . . 7 (𝑠 = 𝑏 → (∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))) ↔ ∀𝑐𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘)))))
2318, 22syl5bb 271 . . . . . 6 (𝑠 = 𝑏 → (∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))) ↔ ∀𝑐𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘)))))
243, 23anbi12d 743 . . . . 5 (𝑠 = 𝑏 → (( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)))) ↔ ( 𝑏 = (𝐹𝑘) ∧ ∀𝑐𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))))
2524cbvrabv 3172 . . . 4 {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))} = {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑏 = (𝐹𝑘) ∧ ∀𝑐𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))}
26 imaeq2 5381 . . . . . . 7 (𝑘 = 𝑎 → (𝐹𝑘) = (𝐹𝑎))
2726eqeq2d 2620 . . . . . 6 (𝑘 = 𝑎 → ( 𝑏 = (𝐹𝑘) ↔ 𝑏 = (𝐹𝑎)))
28 oveq2 6557 . . . . . . . . . 10 (𝑘 = 𝑎 → (𝐽t 𝑘) = (𝐽t 𝑎))
2928oveq2d 6565 . . . . . . . . 9 (𝑘 = 𝑎 → ((𝐶t 𝑐)Homeo(𝐽t 𝑘)) = ((𝐶t 𝑐)Homeo(𝐽t 𝑎)))
3029eleq2d 2673 . . . . . . . 8 (𝑘 = 𝑎 → ((𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘)) ↔ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑎))))
3130anbi2d 736 . . . . . . 7 (𝑘 = 𝑎 → ((∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))) ↔ (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑎)))))
3231ralbidv 2969 . . . . . 6 (𝑘 = 𝑎 → (∀𝑐𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))) ↔ ∀𝑐𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑎)))))
3327, 32anbi12d 743 . . . . 5 (𝑘 = 𝑎 → (( 𝑏 = (𝐹𝑘) ∧ ∀𝑐𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘)))) ↔ ( 𝑏 = (𝐹𝑎) ∧ ∀𝑐𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑎))))))
3433rabbidv 3164 . . . 4 (𝑘 = 𝑎 → {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑏 = (𝐹𝑘) ∧ ∀𝑐𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))} = {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑏 = (𝐹𝑎) ∧ ∀𝑐𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑎))))})
3525, 34syl5eq 2656 . . 3 (𝑘 = 𝑎 → {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))} = {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑏 = (𝐹𝑎) ∧ ∀𝑐𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑎))))})
3635cbvmptv 4678 . 2 (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))}) = (𝑎𝐽 ↦ {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑏 = (𝐹𝑎) ∧ ∀𝑐𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑎))))})
371, 36eqtri 2632 1 𝑆 = (𝑎𝐽 ↦ {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑏 = (𝐹𝑎) ∧ ∀𝑐𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑎))))})
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1475  wcel 1977  wral 2896  {crab 2900  cdif 3537  cin 3539  c0 3874  𝒫 cpw 4108  {csn 4125   cuni 4372  cmpt 4643  ccnv 5037  cres 5040  cima 5041  (class class class)co 6549  t crest 15904  Homeochmeo 21366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-xp 5044  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fv 5812  df-ov 6552
This theorem is referenced by:  cvmsss2  30510  cvmliftmoi  30519  cvmlift  30535  cvmfo  30536  cvmlift3  30564
  Copyright terms: Public domain W3C validator