HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvbr2 Structured version   Visualization version   GIF version

Theorem cvbr2 28526
Description: Binary relation expressing 𝐵 covers 𝐴. Definition of covers in [Kalmbach] p. 15. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvbr2 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ∀𝑥C ((𝐴𝑥𝑥𝐵) → 𝑥 = 𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem cvbr2
StepHypRef Expression
1 cvbr 28525 . 2 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))))
2 iman 439 . . . . . 6 (((𝐴𝑥𝑥𝐵) → 𝑥 = 𝐵) ↔ ¬ ((𝐴𝑥𝑥𝐵) ∧ ¬ 𝑥 = 𝐵))
3 anass 679 . . . . . . 7 (((𝐴𝑥𝑥𝐵) ∧ ¬ 𝑥 = 𝐵) ↔ (𝐴𝑥 ∧ (𝑥𝐵 ∧ ¬ 𝑥 = 𝐵)))
4 dfpss2 3654 . . . . . . . 8 (𝑥𝐵 ↔ (𝑥𝐵 ∧ ¬ 𝑥 = 𝐵))
54anbi2i 726 . . . . . . 7 ((𝐴𝑥𝑥𝐵) ↔ (𝐴𝑥 ∧ (𝑥𝐵 ∧ ¬ 𝑥 = 𝐵)))
63, 5bitr4i 266 . . . . . 6 (((𝐴𝑥𝑥𝐵) ∧ ¬ 𝑥 = 𝐵) ↔ (𝐴𝑥𝑥𝐵))
72, 6xchbinx 323 . . . . 5 (((𝐴𝑥𝑥𝐵) → 𝑥 = 𝐵) ↔ ¬ (𝐴𝑥𝑥𝐵))
87ralbii 2963 . . . 4 (∀𝑥C ((𝐴𝑥𝑥𝐵) → 𝑥 = 𝐵) ↔ ∀𝑥C ¬ (𝐴𝑥𝑥𝐵))
9 ralnex 2975 . . . 4 (∀𝑥C ¬ (𝐴𝑥𝑥𝐵) ↔ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))
108, 9bitri 263 . . 3 (∀𝑥C ((𝐴𝑥𝑥𝐵) → 𝑥 = 𝐵) ↔ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))
1110anbi2i 726 . 2 ((𝐴𝐵 ∧ ∀𝑥C ((𝐴𝑥𝑥𝐵) → 𝑥 = 𝐵)) ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵)))
121, 11syl6bbr 277 1 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ∀𝑥C ((𝐴𝑥𝑥𝐵) → 𝑥 = 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  wss 3540  wpss 3541   class class class wbr 4583   C cch 27170   ccv 27205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-cv 28522
This theorem is referenced by:  spansncv2  28536  elat2  28583
  Copyright terms: Public domain W3C validator