MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshw1 Structured version   Visualization version   GIF version

Theorem cshw1 13419
Description: If cyclically shifting a word by 1 position results in the word itself, the word is build of identical symbols. Remark: also "valid" for an empty word! (Contributed by AV, 13-May-2018.) (Revised by AV, 7-Jun-2018.) (Proof shortened by AV, 1-Nov-2018.)
Assertion
Ref Expression
cshw1 ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑊‘0))
Distinct variable groups:   𝑖,𝑉   𝑖,𝑊

Proof of Theorem cshw1
StepHypRef Expression
1 ral0 4028 . . . 4 𝑖 ∈ ∅ (𝑊𝑖) = (𝑊‘0)
2 oveq2 6557 . . . . . 6 ((#‘𝑊) = 0 → (0..^(#‘𝑊)) = (0..^0))
3 fzo0 12361 . . . . . 6 (0..^0) = ∅
42, 3syl6eq 2660 . . . . 5 ((#‘𝑊) = 0 → (0..^(#‘𝑊)) = ∅)
54raleqdv 3121 . . . 4 ((#‘𝑊) = 0 → (∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑊‘0) ↔ ∀𝑖 ∈ ∅ (𝑊𝑖) = (𝑊‘0)))
61, 5mpbiri 247 . . 3 ((#‘𝑊) = 0 → ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑊‘0))
76a1d 25 . 2 ((#‘𝑊) = 0 → ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑊‘0)))
8 simprl 790 . . . . . . . 8 (((¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → 𝑊 ∈ Word 𝑉)
9 lencl 13179 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉 → (#‘𝑊) ∈ ℕ0)
10 1nn0 11185 . . . . . . . . . . . . . 14 1 ∈ ℕ0
1110a1i 11 . . . . . . . . . . . . 13 (((#‘𝑊) ∈ ℕ0 ∧ (¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1)) → 1 ∈ ℕ0)
12 df-ne 2782 . . . . . . . . . . . . . . . 16 ((#‘𝑊) ≠ 0 ↔ ¬ (#‘𝑊) = 0)
13 elnnne0 11183 . . . . . . . . . . . . . . . . 17 ((#‘𝑊) ∈ ℕ ↔ ((#‘𝑊) ∈ ℕ0 ∧ (#‘𝑊) ≠ 0))
1413simplbi2com 655 . . . . . . . . . . . . . . . 16 ((#‘𝑊) ≠ 0 → ((#‘𝑊) ∈ ℕ0 → (#‘𝑊) ∈ ℕ))
1512, 14sylbir 224 . . . . . . . . . . . . . . 15 (¬ (#‘𝑊) = 0 → ((#‘𝑊) ∈ ℕ0 → (#‘𝑊) ∈ ℕ))
1615adantr 480 . . . . . . . . . . . . . 14 ((¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1) → ((#‘𝑊) ∈ ℕ0 → (#‘𝑊) ∈ ℕ))
1716impcom 445 . . . . . . . . . . . . 13 (((#‘𝑊) ∈ ℕ0 ∧ (¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1)) → (#‘𝑊) ∈ ℕ)
18 df-ne 2782 . . . . . . . . . . . . . . . 16 ((#‘𝑊) ≠ 1 ↔ ¬ (#‘𝑊) = 1)
1918biimpri 217 . . . . . . . . . . . . . . 15 (¬ (#‘𝑊) = 1 → (#‘𝑊) ≠ 1)
2019ad2antll 761 . . . . . . . . . . . . . 14 (((#‘𝑊) ∈ ℕ0 ∧ (¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1)) → (#‘𝑊) ≠ 1)
21 nngt1ne1 10924 . . . . . . . . . . . . . . 15 ((#‘𝑊) ∈ ℕ → (1 < (#‘𝑊) ↔ (#‘𝑊) ≠ 1))
2217, 21syl 17 . . . . . . . . . . . . . 14 (((#‘𝑊) ∈ ℕ0 ∧ (¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1)) → (1 < (#‘𝑊) ↔ (#‘𝑊) ≠ 1))
2320, 22mpbird 246 . . . . . . . . . . . . 13 (((#‘𝑊) ∈ ℕ0 ∧ (¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1)) → 1 < (#‘𝑊))
24 elfzo0 12376 . . . . . . . . . . . . 13 (1 ∈ (0..^(#‘𝑊)) ↔ (1 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ ∧ 1 < (#‘𝑊)))
2511, 17, 23, 24syl3anbrc 1239 . . . . . . . . . . . 12 (((#‘𝑊) ∈ ℕ0 ∧ (¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1)) → 1 ∈ (0..^(#‘𝑊)))
2625ex 449 . . . . . . . . . . 11 ((#‘𝑊) ∈ ℕ0 → ((¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1) → 1 ∈ (0..^(#‘𝑊))))
279, 26syl 17 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → ((¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1) → 1 ∈ (0..^(#‘𝑊))))
2827adantr 480 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ((¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1) → 1 ∈ (0..^(#‘𝑊))))
2928impcom 445 . . . . . . . 8 (((¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → 1 ∈ (0..^(#‘𝑊)))
30 simprr 792 . . . . . . . 8 (((¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → (𝑊 cyclShift 1) = 𝑊)
31 lbfzo0 12375 . . . . . . . . . . . . . . . . 17 (0 ∈ (0..^(#‘𝑊)) ↔ (#‘𝑊) ∈ ℕ)
3231biimpri 217 . . . . . . . . . . . . . . . 16 ((#‘𝑊) ∈ ℕ → 0 ∈ (0..^(#‘𝑊)))
3313, 32sylbir 224 . . . . . . . . . . . . . . 15 (((#‘𝑊) ∈ ℕ0 ∧ (#‘𝑊) ≠ 0) → 0 ∈ (0..^(#‘𝑊)))
3433ex 449 . . . . . . . . . . . . . 14 ((#‘𝑊) ∈ ℕ0 → ((#‘𝑊) ≠ 0 → 0 ∈ (0..^(#‘𝑊))))
3512, 34syl5bir 232 . . . . . . . . . . . . 13 ((#‘𝑊) ∈ ℕ0 → (¬ (#‘𝑊) = 0 → 0 ∈ (0..^(#‘𝑊))))
369, 35syl 17 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝑉 → (¬ (#‘𝑊) = 0 → 0 ∈ (0..^(#‘𝑊))))
3736adantr 480 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → (¬ (#‘𝑊) = 0 → 0 ∈ (0..^(#‘𝑊))))
3837com12 32 . . . . . . . . . 10 (¬ (#‘𝑊) = 0 → ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → 0 ∈ (0..^(#‘𝑊))))
3938adantr 480 . . . . . . . . 9 ((¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1) → ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → 0 ∈ (0..^(#‘𝑊))))
4039imp 444 . . . . . . . 8 (((¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → 0 ∈ (0..^(#‘𝑊)))
41 elfzoelz 12339 . . . . . . . . . 10 (1 ∈ (0..^(#‘𝑊)) → 1 ∈ ℤ)
42 cshweqrep 13418 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ 1 ∈ ℤ) → (((𝑊 cyclShift 1) = 𝑊 ∧ 0 ∈ (0..^(#‘𝑊))) → ∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊)))))
4341, 42sylan2 490 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 1 ∈ (0..^(#‘𝑊))) → (((𝑊 cyclShift 1) = 𝑊 ∧ 0 ∈ (0..^(#‘𝑊))) → ∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊)))))
4443imp 444 . . . . . . . 8 (((𝑊 ∈ Word 𝑉 ∧ 1 ∈ (0..^(#‘𝑊))) ∧ ((𝑊 cyclShift 1) = 𝑊 ∧ 0 ∈ (0..^(#‘𝑊)))) → ∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊))))
458, 29, 30, 40, 44syl22anc 1319 . . . . . . 7 (((¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → ∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊))))
46 0nn0 11184 . . . . . . . . 9 0 ∈ ℕ0
47 fzossnn0 12368 . . . . . . . . 9 (0 ∈ ℕ0 → (0..^(#‘𝑊)) ⊆ ℕ0)
48 ssralv 3629 . . . . . . . . 9 ((0..^(#‘𝑊)) ⊆ ℕ0 → (∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊))) → ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊)))))
4946, 47, 48mp2b 10 . . . . . . . 8 (∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊))) → ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊))))
50 eqcom 2617 . . . . . . . . . 10 ((𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊))) ↔ (𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊))) = (𝑊‘0))
51 elfzoelz 12339 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^(#‘𝑊)) → 𝑖 ∈ ℤ)
52 zre 11258 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℤ → 𝑖 ∈ ℝ)
53 ax-1rid 9885 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℝ → (𝑖 · 1) = 𝑖)
5452, 53syl 17 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℤ → (𝑖 · 1) = 𝑖)
5554oveq2d 6565 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℤ → (0 + (𝑖 · 1)) = (0 + 𝑖))
56 zcn 11259 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
5756addid2d 10116 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℤ → (0 + 𝑖) = 𝑖)
5855, 57eqtrd 2644 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → (0 + (𝑖 · 1)) = 𝑖)
5951, 58syl 17 . . . . . . . . . . . . . . 15 (𝑖 ∈ (0..^(#‘𝑊)) → (0 + (𝑖 · 1)) = 𝑖)
6059oveq1d 6564 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^(#‘𝑊)) → ((0 + (𝑖 · 1)) mod (#‘𝑊)) = (𝑖 mod (#‘𝑊)))
61 zmodidfzoimp 12562 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^(#‘𝑊)) → (𝑖 mod (#‘𝑊)) = 𝑖)
6260, 61eqtrd 2644 . . . . . . . . . . . . 13 (𝑖 ∈ (0..^(#‘𝑊)) → ((0 + (𝑖 · 1)) mod (#‘𝑊)) = 𝑖)
6362fveq2d 6107 . . . . . . . . . . . 12 (𝑖 ∈ (0..^(#‘𝑊)) → (𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊))) = (𝑊𝑖))
6463eqeq1d 2612 . . . . . . . . . . 11 (𝑖 ∈ (0..^(#‘𝑊)) → ((𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊))) = (𝑊‘0) ↔ (𝑊𝑖) = (𝑊‘0)))
6564biimpd 218 . . . . . . . . . 10 (𝑖 ∈ (0..^(#‘𝑊)) → ((𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊))) = (𝑊‘0) → (𝑊𝑖) = (𝑊‘0)))
6650, 65syl5bi 231 . . . . . . . . 9 (𝑖 ∈ (0..^(#‘𝑊)) → ((𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊))) → (𝑊𝑖) = (𝑊‘0)))
6766ralimia 2934 . . . . . . . 8 (∀𝑖 ∈ (0..^(#‘𝑊))(𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊))) → ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑊‘0))
6849, 67syl 17 . . . . . . 7 (∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊))) → ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑊‘0))
6945, 68syl 17 . . . . . 6 (((¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑊‘0))
7069ex 449 . . . . 5 ((¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1) → ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑊‘0)))
7170impancom 455 . . . 4 ((¬ (#‘𝑊) = 0 ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → (¬ (#‘𝑊) = 1 → ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑊‘0)))
72 eqid 2610 . . . . . 6 (𝑊‘0) = (𝑊‘0)
73 c0ex 9913 . . . . . . 7 0 ∈ V
74 fveq2 6103 . . . . . . . 8 (𝑖 = 0 → (𝑊𝑖) = (𝑊‘0))
7574eqeq1d 2612 . . . . . . 7 (𝑖 = 0 → ((𝑊𝑖) = (𝑊‘0) ↔ (𝑊‘0) = (𝑊‘0)))
7673, 75ralsn 4169 . . . . . 6 (∀𝑖 ∈ {0} (𝑊𝑖) = (𝑊‘0) ↔ (𝑊‘0) = (𝑊‘0))
7772, 76mpbir 220 . . . . 5 𝑖 ∈ {0} (𝑊𝑖) = (𝑊‘0)
78 oveq2 6557 . . . . . . 7 ((#‘𝑊) = 1 → (0..^(#‘𝑊)) = (0..^1))
79 fzo01 12417 . . . . . . 7 (0..^1) = {0}
8078, 79syl6eq 2660 . . . . . 6 ((#‘𝑊) = 1 → (0..^(#‘𝑊)) = {0})
8180raleqdv 3121 . . . . 5 ((#‘𝑊) = 1 → (∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑊‘0) ↔ ∀𝑖 ∈ {0} (𝑊𝑖) = (𝑊‘0)))
8277, 81mpbiri 247 . . . 4 ((#‘𝑊) = 1 → ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑊‘0))
8371, 82pm2.61d2 171 . . 3 ((¬ (#‘𝑊) = 0 ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑊‘0))
8483ex 449 . 2 (¬ (#‘𝑊) = 0 → ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑊‘0)))
857, 84pm2.61i 175 1 ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑊‘0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wss 3540  c0 3874  {csn 4125   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cn 10897  0cn0 11169  cz 11254  ..^cfzo 12334   mod cmo 12530  #chash 12979  Word cword 13146   cyclShift ccsh 13385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-hash 12980  df-word 13154  df-concat 13156  df-substr 13158  df-csh 13386
This theorem is referenced by:  cshw1repsw  13420
  Copyright terms: Public domain W3C validator