MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbov Structured version   Visualization version   GIF version

Theorem csbov 6586
Description: Move class substitution in and out of an operation. (Contributed by NM, 23-Aug-2018.)
Assertion
Ref Expression
csbov 𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐵𝐴 / 𝑥𝐹𝐶)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem csbov
StepHypRef Expression
1 csbov123 6585 . 2 𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)
2 csbconstg 3512 . . . 4 (𝐴 ∈ V → 𝐴 / 𝑥𝐵 = 𝐵)
3 csbconstg 3512 . . . 4 (𝐴 ∈ V → 𝐴 / 𝑥𝐶 = 𝐶)
42, 3oveq12d 6567 . . 3 (𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶) = (𝐵𝐴 / 𝑥𝐹𝐶))
5 0fv 6137 . . . . 5 (∅‘⟨𝐵, 𝐶⟩) = ∅
6 df-ov 6552 . . . . 5 (𝐵𝐶) = (∅‘⟨𝐵, 𝐶⟩)
7 df-ov 6552 . . . . . 6 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) = (∅‘⟨𝐴 / 𝑥𝐵, 𝐴 / 𝑥𝐶⟩)
8 0fv 6137 . . . . . 6 (∅‘⟨𝐴 / 𝑥𝐵, 𝐴 / 𝑥𝐶⟩) = ∅
97, 8eqtri 2632 . . . . 5 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) = ∅
105, 6, 93eqtr4ri 2643 . . . 4 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) = (𝐵𝐶)
11 csbprc 3932 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐹 = ∅)
1211oveqd 6566 . . . 4 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
1311oveqd 6566 . . . 4 𝐴 ∈ V → (𝐵𝐴 / 𝑥𝐹𝐶) = (𝐵𝐶))
1410, 12, 133eqtr4a 2670 . . 3 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶) = (𝐵𝐴 / 𝑥𝐹𝐶))
154, 14pm2.61i 175 . 2 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶) = (𝐵𝐴 / 𝑥𝐹𝐶)
161, 15eqtri 2632 1 𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐵𝐴 / 𝑥𝐹𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1475  wcel 1977  Vcvv 3173  csb 3499  c0 3874  cop 4131  cfv 5804  (class class class)co 6549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717  ax-pow 4769
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-dm 5048  df-iota 5768  df-fv 5812  df-ov 6552
This theorem is referenced by:  mptcoe1matfsupp  20426  mp2pm2mplem4  20433
  Copyright terms: Public domain W3C validator