MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cru Structured version   Visualization version   GIF version

Theorem cru 10889
Description: The representation of complex numbers in terms of real and imaginary parts is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
cru (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem cru
StepHypRef Expression
1 simplrl 796 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐶 ∈ ℝ)
21recnd 9947 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐶 ∈ ℂ)
3 simplll 794 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐴 ∈ ℝ)
43recnd 9947 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐴 ∈ ℂ)
5 simpr 476 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)))
6 ax-icn 9874 . . . . . . . . . . 11 i ∈ ℂ
76a1i 11 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → i ∈ ℂ)
8 simpllr 795 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐵 ∈ ℝ)
98recnd 9947 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐵 ∈ ℂ)
107, 9mulcld 9939 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · 𝐵) ∈ ℂ)
11 simplrr 797 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐷 ∈ ℝ)
1211recnd 9947 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐷 ∈ ℂ)
137, 12mulcld 9939 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · 𝐷) ∈ ℂ)
144, 10, 2, 13addsubeq4d 10322 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) ↔ (𝐶𝐴) = ((i · 𝐵) − (i · 𝐷))))
155, 14mpbid 221 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐶𝐴) = ((i · 𝐵) − (i · 𝐷)))
168, 11resubcld 10337 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐵𝐷) ∈ ℝ)
177, 9, 12subdid 10365 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · (𝐵𝐷)) = ((i · 𝐵) − (i · 𝐷)))
1817, 15eqtr4d 2647 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · (𝐵𝐷)) = (𝐶𝐴))
191, 3resubcld 10337 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐶𝐴) ∈ ℝ)
2018, 19eqeltrd 2688 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · (𝐵𝐷)) ∈ ℝ)
21 rimul 10888 . . . . . . . . . . 11 (((𝐵𝐷) ∈ ℝ ∧ (i · (𝐵𝐷)) ∈ ℝ) → (𝐵𝐷) = 0)
2216, 20, 21syl2anc 691 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐵𝐷) = 0)
239, 12, 22subeq0d 10279 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐵 = 𝐷)
2423oveq2d 6565 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · 𝐵) = (i · 𝐷))
2524oveq1d 6564 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → ((i · 𝐵) − (i · 𝐷)) = ((i · 𝐷) − (i · 𝐷)))
2613subidd 10259 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → ((i · 𝐷) − (i · 𝐷)) = 0)
2715, 25, 263eqtrd 2648 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐶𝐴) = 0)
282, 4, 27subeq0d 10279 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐶 = 𝐴)
2928eqcomd 2616 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐴 = 𝐶)
3029, 23jca 553 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐴 = 𝐶𝐵 = 𝐷))
3130ex 449 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷)))
32 oveq2 6557 . . 3 (𝐵 = 𝐷 → (i · 𝐵) = (i · 𝐷))
33 oveq12 6558 . . 3 ((𝐴 = 𝐶 ∧ (i · 𝐵) = (i · 𝐷)) → (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)))
3432, 33sylan2 490 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)))
3531, 34impbid1 214 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  ici 9817   + caddc 9818   · cmul 9820  cmin 10145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564
This theorem is referenced by:  crne0  10890  creur  10891  creui  10892  cnref1o  11703  efieq  14732
  Copyright terms: Public domain W3C validator