MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzi Structured version   Visualization version   GIF version

Theorem cntzi 17585
Description: Membership in a centralizer (inference). (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
cntzi.p + = (+g𝑀)
cntzi.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzi ((𝑋 ∈ (𝑍𝑆) ∧ 𝑌𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋))

Proof of Theorem cntzi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . . . 7 (Base‘𝑀) = (Base‘𝑀)
2 cntzi.z . . . . . . 7 𝑍 = (Cntz‘𝑀)
31, 2cntzrcl 17583 . . . . . 6 (𝑋 ∈ (𝑍𝑆) → (𝑀 ∈ V ∧ 𝑆 ⊆ (Base‘𝑀)))
43simprd 478 . . . . 5 (𝑋 ∈ (𝑍𝑆) → 𝑆 ⊆ (Base‘𝑀))
5 cntzi.p . . . . . 6 + = (+g𝑀)
61, 5, 2elcntz 17578 . . . . 5 (𝑆 ⊆ (Base‘𝑀) → (𝑋 ∈ (𝑍𝑆) ↔ (𝑋 ∈ (Base‘𝑀) ∧ ∀𝑦𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋))))
74, 6syl 17 . . . 4 (𝑋 ∈ (𝑍𝑆) → (𝑋 ∈ (𝑍𝑆) ↔ (𝑋 ∈ (Base‘𝑀) ∧ ∀𝑦𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋))))
87simplbda 652 . . 3 ((𝑋 ∈ (𝑍𝑆) ∧ 𝑋 ∈ (𝑍𝑆)) → ∀𝑦𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋))
98anidms 675 . 2 (𝑋 ∈ (𝑍𝑆) → ∀𝑦𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋))
10 oveq2 6557 . . . 4 (𝑦 = 𝑌 → (𝑋 + 𝑦) = (𝑋 + 𝑌))
11 oveq1 6556 . . . 4 (𝑦 = 𝑌 → (𝑦 + 𝑋) = (𝑌 + 𝑋))
1210, 11eqeq12d 2625 . . 3 (𝑦 = 𝑌 → ((𝑋 + 𝑦) = (𝑦 + 𝑋) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
1312rspccva 3281 . 2 ((∀𝑦𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋) ∧ 𝑌𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
149, 13sylan 487 1 ((𝑋 ∈ (𝑍𝑆) ∧ 𝑌𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  wss 3540  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  Cntzccntz 17571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-cntz 17573
This theorem is referenced by:  cntri  17586  cntz2ss  17588  cntzsubm  17591  cntzsubg  17592  cntzmhm  17594  cntrsubgnsg  17596  lsmsubm  17891  lsmsubg  17892  lsmcom2  17893  subgdisj1  17927  subgdisj2  17928  pj1id  17935  pj1ghm  17939  gsumval3eu  18128  gsumval3  18131  gsumzaddlem  18144  gsumzoppg  18167  dprdfcntz  18237  cntzsubr  18635  cntzsdrg  36791
  Copyright terms: Public domain W3C validator