Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnre2csqlem Structured version   Visualization version   GIF version

Theorem cnre2csqlem 29284
Description: Lemma for cnre2csqima 29285. (Contributed by Thierry Arnoux, 27-Sep-2017.)
Hypotheses
Ref Expression
cnre2csqlem.1 (𝐺 ↾ (ℝ × ℝ)) = (𝐻𝐹)
cnre2csqlem.2 𝐹 Fn (ℝ × ℝ)
cnre2csqlem.3 𝐺 Fn V
cnre2csqlem.4 (𝑥 ∈ (ℝ × ℝ) → (𝐺𝑥) ∈ ℝ)
cnre2csqlem.5 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → (𝐻‘(𝑥𝑦)) = ((𝐻𝑥) − (𝐻𝑦)))
Assertion
Ref Expression
cnre2csqlem ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → (abs‘(𝐻‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝐺(𝑦)

Proof of Theorem cnre2csqlem
StepHypRef Expression
1 cnre2csqlem.3 . . . . . . 7 𝐺 Fn V
2 ssv 3588 . . . . . . 7 (ℝ × ℝ) ⊆ V
3 fnssres 5918 . . . . . . 7 ((𝐺 Fn V ∧ (ℝ × ℝ) ⊆ V) → (𝐺 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ))
41, 2, 3mp2an 704 . . . . . 6 (𝐺 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)
5 elpreima 6245 . . . . . 6 ((𝐺 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) ↔ (𝑌 ∈ (ℝ × ℝ) ∧ ((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)))))
64, 5mp1i 13 . . . . 5 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) ↔ (𝑌 ∈ (ℝ × ℝ) ∧ ((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)))))
76simplbda 652 . . . 4 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) ∧ 𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)))) → ((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)))
87ex 449 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → ((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))))
9 simp2 1055 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → 𝑌 ∈ (ℝ × ℝ))
10 fvres 6117 . . . . . 6 (𝑌 ∈ (ℝ × ℝ) → ((𝐺 ↾ (ℝ × ℝ))‘𝑌) = (𝐺𝑌))
119, 10syl 17 . . . . 5 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺 ↾ (ℝ × ℝ))‘𝑌) = (𝐺𝑌))
1211eleq1d 2672 . . . 4 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)) ↔ (𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))))
13 simp1 1054 . . . . . . . . . . . 12 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → 𝑋 ∈ (ℝ × ℝ))
14 fveq2 6103 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
1514eleq1d 2672 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ((𝐺𝑥) ∈ ℝ ↔ (𝐺𝑋) ∈ ℝ))
16 cnre2csqlem.4 . . . . . . . . . . . . 13 (𝑥 ∈ (ℝ × ℝ) → (𝐺𝑥) ∈ ℝ)
1715, 16vtoclga 3245 . . . . . . . . . . . 12 (𝑋 ∈ (ℝ × ℝ) → (𝐺𝑋) ∈ ℝ)
1813, 17syl 17 . . . . . . . . . . 11 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐺𝑋) ∈ ℝ)
19 simp3 1056 . . . . . . . . . . . 12 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℝ+)
2019rpred 11748 . . . . . . . . . . 11 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℝ)
2118, 20resubcld 10337 . . . . . . . . . 10 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑋) − 𝐷) ∈ ℝ)
2221rexrd 9968 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑋) − 𝐷) ∈ ℝ*)
2318, 20readdcld 9948 . . . . . . . . . 10 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑋) + 𝐷) ∈ ℝ)
2423rexrd 9968 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑋) + 𝐷) ∈ ℝ*)
25 elioo2 12087 . . . . . . . . 9 ((((𝐺𝑋) − 𝐷) ∈ ℝ* ∧ ((𝐺𝑋) + 𝐷) ∈ ℝ*) → ((𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)) ↔ ((𝐺𝑌) ∈ ℝ ∧ ((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷))))
2622, 24, 25syl2anc 691 . . . . . . . 8 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)) ↔ ((𝐺𝑌) ∈ ℝ ∧ ((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷))))
2726biimpa 500 . . . . . . 7 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) ∧ (𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → ((𝐺𝑌) ∈ ℝ ∧ ((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷)))
2827simp2d 1067 . . . . . 6 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) ∧ (𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → ((𝐺𝑋) − 𝐷) < (𝐺𝑌))
2927simp3d 1068 . . . . . 6 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) ∧ (𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → (𝐺𝑌) < ((𝐺𝑋) + 𝐷))
3028, 29jca 553 . . . . 5 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) ∧ (𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → (((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷)))
3130ex 449 . . . 4 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)) → (((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷))))
3212, 31sylbid 229 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)) → (((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷))))
33 fveq2 6103 . . . . . . 7 (𝑥 = 𝑌 → (𝐺𝑥) = (𝐺𝑌))
3433eleq1d 2672 . . . . . 6 (𝑥 = 𝑌 → ((𝐺𝑥) ∈ ℝ ↔ (𝐺𝑌) ∈ ℝ))
3534, 16vtoclga 3245 . . . . 5 (𝑌 ∈ (ℝ × ℝ) → (𝐺𝑌) ∈ ℝ)
369, 35syl 17 . . . 4 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐺𝑌) ∈ ℝ)
37 absdiflt 13905 . . . . 5 (((𝐺𝑌) ∈ ℝ ∧ (𝐺𝑋) ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((abs‘((𝐺𝑌) − (𝐺𝑋))) < 𝐷 ↔ (((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷))))
3837biimprd 237 . . . 4 (((𝐺𝑌) ∈ ℝ ∧ (𝐺𝑋) ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷)) → (abs‘((𝐺𝑌) − (𝐺𝑋))) < 𝐷))
3936, 18, 20, 38syl3anc 1318 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷)) → (abs‘((𝐺𝑌) − (𝐺𝑋))) < 𝐷))
408, 32, 393syld 58 . 2 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → (abs‘((𝐺𝑌) − (𝐺𝑋))) < 𝐷))
41 cnre2csqlem.2 . . . . . . 7 𝐹 Fn (ℝ × ℝ)
42 fnfvelrn 6264 . . . . . . 7 ((𝐹 Fn (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ)) → (𝐹𝑌) ∈ ran 𝐹)
4341, 9, 42sylancr 694 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐹𝑌) ∈ ran 𝐹)
44 fnfvelrn 6264 . . . . . . 7 ((𝐹 Fn (ℝ × ℝ) ∧ 𝑋 ∈ (ℝ × ℝ)) → (𝐹𝑋) ∈ ran 𝐹)
4541, 13, 44sylancr 694 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐹𝑋) ∈ ran 𝐹)
46 oveq1 6556 . . . . . . . . 9 (𝑥 = (𝐹𝑌) → (𝑥𝑦) = ((𝐹𝑌) − 𝑦))
4746fveq2d 6107 . . . . . . . 8 (𝑥 = (𝐹𝑌) → (𝐻‘(𝑥𝑦)) = (𝐻‘((𝐹𝑌) − 𝑦)))
48 fveq2 6103 . . . . . . . . 9 (𝑥 = (𝐹𝑌) → (𝐻𝑥) = (𝐻‘(𝐹𝑌)))
4948oveq1d 6564 . . . . . . . 8 (𝑥 = (𝐹𝑌) → ((𝐻𝑥) − (𝐻𝑦)) = ((𝐻‘(𝐹𝑌)) − (𝐻𝑦)))
5047, 49eqeq12d 2625 . . . . . . 7 (𝑥 = (𝐹𝑌) → ((𝐻‘(𝑥𝑦)) = ((𝐻𝑥) − (𝐻𝑦)) ↔ (𝐻‘((𝐹𝑌) − 𝑦)) = ((𝐻‘(𝐹𝑌)) − (𝐻𝑦))))
51 oveq2 6557 . . . . . . . . 9 (𝑦 = (𝐹𝑋) → ((𝐹𝑌) − 𝑦) = ((𝐹𝑌) − (𝐹𝑋)))
5251fveq2d 6107 . . . . . . . 8 (𝑦 = (𝐹𝑋) → (𝐻‘((𝐹𝑌) − 𝑦)) = (𝐻‘((𝐹𝑌) − (𝐹𝑋))))
53 fveq2 6103 . . . . . . . . 9 (𝑦 = (𝐹𝑋) → (𝐻𝑦) = (𝐻‘(𝐹𝑋)))
5453oveq2d 6565 . . . . . . . 8 (𝑦 = (𝐹𝑋) → ((𝐻‘(𝐹𝑌)) − (𝐻𝑦)) = ((𝐻‘(𝐹𝑌)) − (𝐻‘(𝐹𝑋))))
5552, 54eqeq12d 2625 . . . . . . 7 (𝑦 = (𝐹𝑋) → ((𝐻‘((𝐹𝑌) − 𝑦)) = ((𝐻‘(𝐹𝑌)) − (𝐻𝑦)) ↔ (𝐻‘((𝐹𝑌) − (𝐹𝑋))) = ((𝐻‘(𝐹𝑌)) − (𝐻‘(𝐹𝑋)))))
56 cnre2csqlem.5 . . . . . . 7 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → (𝐻‘(𝑥𝑦)) = ((𝐻𝑥) − (𝐻𝑦)))
5750, 55, 56vtocl2ga 3247 . . . . . 6 (((𝐹𝑌) ∈ ran 𝐹 ∧ (𝐹𝑋) ∈ ran 𝐹) → (𝐻‘((𝐹𝑌) − (𝐹𝑋))) = ((𝐻‘(𝐹𝑌)) − (𝐻‘(𝐹𝑋))))
5843, 45, 57syl2anc 691 . . . . 5 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐻‘((𝐹𝑌) − (𝐹𝑋))) = ((𝐻‘(𝐹𝑌)) − (𝐻‘(𝐹𝑋))))
59 cnre2csqlem.1 . . . . . . . 8 (𝐺 ↾ (ℝ × ℝ)) = (𝐻𝐹)
6059fveq1i 6104 . . . . . . 7 ((𝐺 ↾ (ℝ × ℝ))‘𝑌) = ((𝐻𝐹)‘𝑌)
61 fvco2 6183 . . . . . . . 8 ((𝐹 Fn (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ)) → ((𝐻𝐹)‘𝑌) = (𝐻‘(𝐹𝑌)))
6241, 9, 61sylancr 694 . . . . . . 7 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐻𝐹)‘𝑌) = (𝐻‘(𝐹𝑌)))
6360, 11, 623eqtr3a 2668 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐺𝑌) = (𝐻‘(𝐹𝑌)))
6459fveq1i 6104 . . . . . . 7 ((𝐺 ↾ (ℝ × ℝ))‘𝑋) = ((𝐻𝐹)‘𝑋)
65 fvres 6117 . . . . . . . 8 (𝑋 ∈ (ℝ × ℝ) → ((𝐺 ↾ (ℝ × ℝ))‘𝑋) = (𝐺𝑋))
6613, 65syl 17 . . . . . . 7 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺 ↾ (ℝ × ℝ))‘𝑋) = (𝐺𝑋))
67 fvco2 6183 . . . . . . . 8 ((𝐹 Fn (ℝ × ℝ) ∧ 𝑋 ∈ (ℝ × ℝ)) → ((𝐻𝐹)‘𝑋) = (𝐻‘(𝐹𝑋)))
6841, 13, 67sylancr 694 . . . . . . 7 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐻𝐹)‘𝑋) = (𝐻‘(𝐹𝑋)))
6964, 66, 683eqtr3a 2668 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐺𝑋) = (𝐻‘(𝐹𝑋)))
7063, 69oveq12d 6567 . . . . 5 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑌) − (𝐺𝑋)) = ((𝐻‘(𝐹𝑌)) − (𝐻‘(𝐹𝑋))))
7158, 70eqtr4d 2647 . . . 4 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐻‘((𝐹𝑌) − (𝐹𝑋))) = ((𝐺𝑌) − (𝐺𝑋)))
7271fveq2d 6107 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (abs‘(𝐻‘((𝐹𝑌) − (𝐹𝑋)))) = (abs‘((𝐺𝑌) − (𝐺𝑋))))
7372breq1d 4593 . 2 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(𝐻‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷 ↔ (abs‘((𝐺𝑌) − (𝐺𝑋))) < 𝐷))
7440, 73sylibrd 248 1 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → (abs‘(𝐻‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  wss 3540   class class class wbr 4583   × cxp 5036  ccnv 5037  ran crn 5039  cres 5040  cima 5041  ccom 5042   Fn wfn 5799  cfv 5804  (class class class)co 6549  cr 9814   + caddc 9818  *cxr 9952   < clt 9953  cmin 10145  +crp 11708  (,)cioo 12046  abscabs 13822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ioo 12050  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824
This theorem is referenced by:  cnre2csqima  29285
  Copyright terms: Public domain W3C validator