MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkcompim Structured version   Visualization version   GIF version

Theorem clwlkcompim 26292
Description: Implications for the properties of the components of a closed walk. (Contributed by Alexander van der Vekens, 24-Jun-2018.)
Hypotheses
Ref Expression
clwlkcomp.1 𝐹 = (1st𝑊)
clwlkcomp.2 𝑃 = (2nd𝑊)
Assertion
Ref Expression
clwlkcompim (𝑊 ∈ (𝑉 ClWalks 𝐸) → ((𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∧ (𝑃‘0) = (𝑃‘(#‘𝐹)))))
Distinct variable groups:   𝑘,𝐸   𝑘,𝐹   𝑃,𝑘   𝑘,𝑉   𝑘,𝑊

Proof of Theorem clwlkcompim
Dummy variables 𝑒 𝑓 𝑝 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-clwlk 26278 . . . 4 ClWalks = (𝑣 ∈ V, 𝑒 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑣 Walks 𝑒)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓)))})
2 vex 3176 . . . . 5 𝑣 ∈ V
3 vex 3176 . . . . 5 𝑒 ∈ V
4 clwlk 26281 . . . . . 6 ((𝑣 ∈ V ∧ 𝑒 ∈ V) → (𝑣 ClWalks 𝑒) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑣 Walks 𝑒)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓)))})
5 ovex 6577 . . . . . 6 (𝑣 ClWalks 𝑒) ∈ V
64, 5syl6eqelr 2697 . . . . 5 ((𝑣 ∈ V ∧ 𝑒 ∈ V) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑣 Walks 𝑒)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓)))} ∈ V)
72, 3, 6mp2an 704 . . . 4 {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑣 Walks 𝑒)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓)))} ∈ V
8 oveq12 6558 . . . . . . 7 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝑣 Walks 𝑒) = (𝑉 Walks 𝐸))
98breqd 4594 . . . . . 6 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝑓(𝑣 Walks 𝑒)𝑝𝑓(𝑉 Walks 𝐸)𝑝))
109anbi1d 737 . . . . 5 ((𝑣 = 𝑉𝑒 = 𝐸) → ((𝑓(𝑣 Walks 𝑒)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓))) ↔ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓)))))
1110opabbidv 4648 . . . 4 ((𝑣 = 𝑉𝑒 = 𝐸) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑣 Walks 𝑒)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓)))} = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓)))})
121, 7, 11elovmpt2 6777 . . 3 (𝑊 ∈ (𝑉 ClWalks 𝐸) ↔ (𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑊 ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓)))}))
13 elopaelxp 5114 . . . 4 (𝑊 ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓)))} → 𝑊 ∈ (V × V))
14 clwlkcomp.1 . . . . . 6 𝐹 = (1st𝑊)
15 clwlkcomp.2 . . . . . 6 𝑃 = (2nd𝑊)
1614, 15clwlkcomp 26291 . . . . 5 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑊 ∈ (V × V)) → (𝑊 ∈ (𝑉 ClWalks 𝐸) ↔ ((𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))))))
1716biimpd 218 . . . 4 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑊 ∈ (V × V)) → (𝑊 ∈ (𝑉 ClWalks 𝐸) → ((𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))))))
1813, 17syl3an3 1353 . . 3 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑊 ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓)))}) → (𝑊 ∈ (𝑉 ClWalks 𝐸) → ((𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))))))
1912, 18sylbi 206 . 2 (𝑊 ∈ (𝑉 ClWalks 𝐸) → (𝑊 ∈ (𝑉 ClWalks 𝐸) → ((𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))))))
2019pm2.43i 50 1 (𝑊 ∈ (𝑉 ClWalks 𝐸) → ((𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∧ (𝑃‘0) = (𝑃‘(#‘𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  {cpr 4127   class class class wbr 4583  {copab 4642   × cxp 5036  dom cdm 5038  wf 5800  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  0cc0 9815  1c1 9816   + caddc 9818  ...cfz 12197  ..^cfzo 12334  #chash 12979  Word cword 13146   Walks cwalk 26026   ClWalks cclwlk 26275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-wlk 26036  df-clwlk 26278
This theorem is referenced by:  clwlkfclwwlk2wrd  26367  clwlkfclwwlk1hash  26369  clwlkfclwwlk  26371  clwlkf1clwwlklem1  26373  clwlkf1clwwlklem2  26374  clwlkf1clwwlklem3  26375
  Copyright terms: Public domain W3C validator