MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfpwsdom Structured version   Visualization version   GIF version

Theorem cfpwsdom 9285
Description: A corollary of Konig's Theorem konigth 9270. Theorem 11.29 of [TakeutiZaring] p. 108. (Contributed by Mario Carneiro, 20-Mar-2013.)
Hypothesis
Ref Expression
cfpwsdom.1 𝐵 ∈ V
Assertion
Ref Expression
cfpwsdom (2𝑜𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))))

Proof of Theorem cfpwsdom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6577 . . . . . . . . 9 (𝐵𝑚 (ℵ‘𝐴)) ∈ V
21cardid 9248 . . . . . . . 8 (card‘(𝐵𝑚 (ℵ‘𝐴))) ≈ (𝐵𝑚 (ℵ‘𝐴))
32ensymi 7892 . . . . . . 7 (𝐵𝑚 (ℵ‘𝐴)) ≈ (card‘(𝐵𝑚 (ℵ‘𝐴)))
4 fvex 6113 . . . . . . . . . . . . . 14 (ℵ‘𝐴) ∈ V
54canth2 7998 . . . . . . . . . . . . 13 (ℵ‘𝐴) ≺ 𝒫 (ℵ‘𝐴)
64pw2en 7952 . . . . . . . . . . . . 13 𝒫 (ℵ‘𝐴) ≈ (2𝑜𝑚 (ℵ‘𝐴))
7 sdomentr 7979 . . . . . . . . . . . . 13 (((ℵ‘𝐴) ≺ 𝒫 (ℵ‘𝐴) ∧ 𝒫 (ℵ‘𝐴) ≈ (2𝑜𝑚 (ℵ‘𝐴))) → (ℵ‘𝐴) ≺ (2𝑜𝑚 (ℵ‘𝐴)))
85, 6, 7mp2an 704 . . . . . . . . . . . 12 (ℵ‘𝐴) ≺ (2𝑜𝑚 (ℵ‘𝐴))
9 mapdom1 8010 . . . . . . . . . . . 12 (2𝑜𝐵 → (2𝑜𝑚 (ℵ‘𝐴)) ≼ (𝐵𝑚 (ℵ‘𝐴)))
10 sdomdomtr 7978 . . . . . . . . . . . 12 (((ℵ‘𝐴) ≺ (2𝑜𝑚 (ℵ‘𝐴)) ∧ (2𝑜𝑚 (ℵ‘𝐴)) ≼ (𝐵𝑚 (ℵ‘𝐴))) → (ℵ‘𝐴) ≺ (𝐵𝑚 (ℵ‘𝐴)))
118, 9, 10sylancr 694 . . . . . . . . . . 11 (2𝑜𝐵 → (ℵ‘𝐴) ≺ (𝐵𝑚 (ℵ‘𝐴)))
12 ficard 9266 . . . . . . . . . . . . . . . . 17 ((𝐵𝑚 (ℵ‘𝐴)) ∈ V → ((𝐵𝑚 (ℵ‘𝐴)) ∈ Fin ↔ (card‘(𝐵𝑚 (ℵ‘𝐴))) ∈ ω))
131, 12ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝐵𝑚 (ℵ‘𝐴)) ∈ Fin ↔ (card‘(𝐵𝑚 (ℵ‘𝐴))) ∈ ω)
14 isfinite 8432 . . . . . . . . . . . . . . . . 17 ((𝐵𝑚 (ℵ‘𝐴)) ∈ Fin ↔ (𝐵𝑚 (ℵ‘𝐴)) ≺ ω)
15 sdomdom 7869 . . . . . . . . . . . . . . . . 17 ((𝐵𝑚 (ℵ‘𝐴)) ≺ ω → (𝐵𝑚 (ℵ‘𝐴)) ≼ ω)
1614, 15sylbi 206 . . . . . . . . . . . . . . . 16 ((𝐵𝑚 (ℵ‘𝐴)) ∈ Fin → (𝐵𝑚 (ℵ‘𝐴)) ≼ ω)
1713, 16sylbir 224 . . . . . . . . . . . . . . 15 ((card‘(𝐵𝑚 (ℵ‘𝐴))) ∈ ω → (𝐵𝑚 (ℵ‘𝐴)) ≼ ω)
18 alephgeom 8788 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
19 alephon 8775 . . . . . . . . . . . . . . . . 17 (ℵ‘𝐴) ∈ On
20 ssdomg 7887 . . . . . . . . . . . . . . . . 17 ((ℵ‘𝐴) ∈ On → (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴)))
2119, 20ax-mp 5 . . . . . . . . . . . . . . . 16 (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴))
2218, 21sylbi 206 . . . . . . . . . . . . . . 15 (𝐴 ∈ On → ω ≼ (ℵ‘𝐴))
23 domtr 7895 . . . . . . . . . . . . . . 15 (((𝐵𝑚 (ℵ‘𝐴)) ≼ ω ∧ ω ≼ (ℵ‘𝐴)) → (𝐵𝑚 (ℵ‘𝐴)) ≼ (ℵ‘𝐴))
2417, 22, 23syl2an 493 . . . . . . . . . . . . . 14 (((card‘(𝐵𝑚 (ℵ‘𝐴))) ∈ ω ∧ 𝐴 ∈ On) → (𝐵𝑚 (ℵ‘𝐴)) ≼ (ℵ‘𝐴))
25 domnsym 7971 . . . . . . . . . . . . . 14 ((𝐵𝑚 (ℵ‘𝐴)) ≼ (ℵ‘𝐴) → ¬ (ℵ‘𝐴) ≺ (𝐵𝑚 (ℵ‘𝐴)))
2624, 25syl 17 . . . . . . . . . . . . 13 (((card‘(𝐵𝑚 (ℵ‘𝐴))) ∈ ω ∧ 𝐴 ∈ On) → ¬ (ℵ‘𝐴) ≺ (𝐵𝑚 (ℵ‘𝐴)))
2726expcom 450 . . . . . . . . . . . 12 (𝐴 ∈ On → ((card‘(𝐵𝑚 (ℵ‘𝐴))) ∈ ω → ¬ (ℵ‘𝐴) ≺ (𝐵𝑚 (ℵ‘𝐴))))
2827con2d 128 . . . . . . . . . . 11 (𝐴 ∈ On → ((ℵ‘𝐴) ≺ (𝐵𝑚 (ℵ‘𝐴)) → ¬ (card‘(𝐵𝑚 (ℵ‘𝐴))) ∈ ω))
29 cardidm 8668 . . . . . . . . . . . 12 (card‘(card‘(𝐵𝑚 (ℵ‘𝐴)))) = (card‘(𝐵𝑚 (ℵ‘𝐴)))
30 iscard3 8799 . . . . . . . . . . . . 13 ((card‘(card‘(𝐵𝑚 (ℵ‘𝐴)))) = (card‘(𝐵𝑚 (ℵ‘𝐴))) ↔ (card‘(𝐵𝑚 (ℵ‘𝐴))) ∈ (ω ∪ ran ℵ))
31 elun 3715 . . . . . . . . . . . . 13 ((card‘(𝐵𝑚 (ℵ‘𝐴))) ∈ (ω ∪ ran ℵ) ↔ ((card‘(𝐵𝑚 (ℵ‘𝐴))) ∈ ω ∨ (card‘(𝐵𝑚 (ℵ‘𝐴))) ∈ ran ℵ))
32 df-or 384 . . . . . . . . . . . . 13 (((card‘(𝐵𝑚 (ℵ‘𝐴))) ∈ ω ∨ (card‘(𝐵𝑚 (ℵ‘𝐴))) ∈ ran ℵ) ↔ (¬ (card‘(𝐵𝑚 (ℵ‘𝐴))) ∈ ω → (card‘(𝐵𝑚 (ℵ‘𝐴))) ∈ ran ℵ))
3330, 31, 323bitri 285 . . . . . . . . . . . 12 ((card‘(card‘(𝐵𝑚 (ℵ‘𝐴)))) = (card‘(𝐵𝑚 (ℵ‘𝐴))) ↔ (¬ (card‘(𝐵𝑚 (ℵ‘𝐴))) ∈ ω → (card‘(𝐵𝑚 (ℵ‘𝐴))) ∈ ran ℵ))
3429, 33mpbi 219 . . . . . . . . . . 11 (¬ (card‘(𝐵𝑚 (ℵ‘𝐴))) ∈ ω → (card‘(𝐵𝑚 (ℵ‘𝐴))) ∈ ran ℵ)
3511, 28, 34syl56 35 . . . . . . . . . 10 (𝐴 ∈ On → (2𝑜𝐵 → (card‘(𝐵𝑚 (ℵ‘𝐴))) ∈ ran ℵ))
36 alephfnon 8771 . . . . . . . . . . 11 ℵ Fn On
37 fvelrnb 6153 . . . . . . . . . . 11 (ℵ Fn On → ((card‘(𝐵𝑚 (ℵ‘𝐴))) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘(𝐵𝑚 (ℵ‘𝐴)))))
3836, 37ax-mp 5 . . . . . . . . . 10 ((card‘(𝐵𝑚 (ℵ‘𝐴))) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘(𝐵𝑚 (ℵ‘𝐴))))
3935, 38syl6ib 240 . . . . . . . . 9 (𝐴 ∈ On → (2𝑜𝐵 → ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘(𝐵𝑚 (ℵ‘𝐴)))))
40 eqid 2610 . . . . . . . . . . . 12 (𝑦 ∈ (cf‘(ℵ‘𝑥)) ↦ (har‘(𝑧𝑦))) = (𝑦 ∈ (cf‘(ℵ‘𝑥)) ↦ (har‘(𝑧𝑦)))
4140pwcfsdom 9284 . . . . . . . . . . 11 (ℵ‘𝑥) ≺ ((ℵ‘𝑥) ↑𝑚 (cf‘(ℵ‘𝑥)))
42 id 22 . . . . . . . . . . . 12 ((ℵ‘𝑥) = (card‘(𝐵𝑚 (ℵ‘𝐴))) → (ℵ‘𝑥) = (card‘(𝐵𝑚 (ℵ‘𝐴))))
43 fveq2 6103 . . . . . . . . . . . . 13 ((ℵ‘𝑥) = (card‘(𝐵𝑚 (ℵ‘𝐴))) → (cf‘(ℵ‘𝑥)) = (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))))
4442, 43oveq12d 6567 . . . . . . . . . . . 12 ((ℵ‘𝑥) = (card‘(𝐵𝑚 (ℵ‘𝐴))) → ((ℵ‘𝑥) ↑𝑚 (cf‘(ℵ‘𝑥))) = ((card‘(𝐵𝑚 (ℵ‘𝐴))) ↑𝑚 (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))))
4542, 44breq12d 4596 . . . . . . . . . . 11 ((ℵ‘𝑥) = (card‘(𝐵𝑚 (ℵ‘𝐴))) → ((ℵ‘𝑥) ≺ ((ℵ‘𝑥) ↑𝑚 (cf‘(ℵ‘𝑥))) ↔ (card‘(𝐵𝑚 (ℵ‘𝐴))) ≺ ((card‘(𝐵𝑚 (ℵ‘𝐴))) ↑𝑚 (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))))))
4641, 45mpbii 222 . . . . . . . . . 10 ((ℵ‘𝑥) = (card‘(𝐵𝑚 (ℵ‘𝐴))) → (card‘(𝐵𝑚 (ℵ‘𝐴))) ≺ ((card‘(𝐵𝑚 (ℵ‘𝐴))) ↑𝑚 (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))))
4746rexlimivw 3011 . . . . . . . . 9 (∃𝑥 ∈ On (ℵ‘𝑥) = (card‘(𝐵𝑚 (ℵ‘𝐴))) → (card‘(𝐵𝑚 (ℵ‘𝐴))) ≺ ((card‘(𝐵𝑚 (ℵ‘𝐴))) ↑𝑚 (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))))
4839, 47syl6 34 . . . . . . . 8 (𝐴 ∈ On → (2𝑜𝐵 → (card‘(𝐵𝑚 (ℵ‘𝐴))) ≺ ((card‘(𝐵𝑚 (ℵ‘𝐴))) ↑𝑚 (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))))))
4948imp 444 . . . . . . 7 ((𝐴 ∈ On ∧ 2𝑜𝐵) → (card‘(𝐵𝑚 (ℵ‘𝐴))) ≺ ((card‘(𝐵𝑚 (ℵ‘𝐴))) ↑𝑚 (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))))
50 ensdomtr 7981 . . . . . . 7 (((𝐵𝑚 (ℵ‘𝐴)) ≈ (card‘(𝐵𝑚 (ℵ‘𝐴))) ∧ (card‘(𝐵𝑚 (ℵ‘𝐴))) ≺ ((card‘(𝐵𝑚 (ℵ‘𝐴))) ↑𝑚 (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))))) → (𝐵𝑚 (ℵ‘𝐴)) ≺ ((card‘(𝐵𝑚 (ℵ‘𝐴))) ↑𝑚 (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))))
513, 49, 50sylancr 694 . . . . . 6 ((𝐴 ∈ On ∧ 2𝑜𝐵) → (𝐵𝑚 (ℵ‘𝐴)) ≺ ((card‘(𝐵𝑚 (ℵ‘𝐴))) ↑𝑚 (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))))
52 fvex 6113 . . . . . . . . 9 (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))) ∈ V
5352enref 7874 . . . . . . . 8 (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))) ≈ (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))
54 mapen 8009 . . . . . . . 8 (((card‘(𝐵𝑚 (ℵ‘𝐴))) ≈ (𝐵𝑚 (ℵ‘𝐴)) ∧ (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))) ≈ (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))) → ((card‘(𝐵𝑚 (ℵ‘𝐴))) ↑𝑚 (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))) ≈ ((𝐵𝑚 (ℵ‘𝐴)) ↑𝑚 (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))))
552, 53, 54mp2an 704 . . . . . . 7 ((card‘(𝐵𝑚 (ℵ‘𝐴))) ↑𝑚 (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))) ≈ ((𝐵𝑚 (ℵ‘𝐴)) ↑𝑚 (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))))
56 cfpwsdom.1 . . . . . . . 8 𝐵 ∈ V
57 mapxpen 8011 . . . . . . . 8 ((𝐵 ∈ V ∧ (ℵ‘𝐴) ∈ On ∧ (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))) ∈ V) → ((𝐵𝑚 (ℵ‘𝐴)) ↑𝑚 (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))) ≈ (𝐵𝑚 ((ℵ‘𝐴) × (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))))))
5856, 19, 52, 57mp3an 1416 . . . . . . 7 ((𝐵𝑚 (ℵ‘𝐴)) ↑𝑚 (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))) ≈ (𝐵𝑚 ((ℵ‘𝐴) × (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))))
5955, 58entri 7896 . . . . . 6 ((card‘(𝐵𝑚 (ℵ‘𝐴))) ↑𝑚 (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))) ≈ (𝐵𝑚 ((ℵ‘𝐴) × (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))))
60 sdomentr 7979 . . . . . 6 (((𝐵𝑚 (ℵ‘𝐴)) ≺ ((card‘(𝐵𝑚 (ℵ‘𝐴))) ↑𝑚 (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))) ∧ ((card‘(𝐵𝑚 (ℵ‘𝐴))) ↑𝑚 (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))) ≈ (𝐵𝑚 ((ℵ‘𝐴) × (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))))) → (𝐵𝑚 (ℵ‘𝐴)) ≺ (𝐵𝑚 ((ℵ‘𝐴) × (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))))))
6151, 59, 60sylancl 693 . . . . 5 ((𝐴 ∈ On ∧ 2𝑜𝐵) → (𝐵𝑚 (ℵ‘𝐴)) ≺ (𝐵𝑚 ((ℵ‘𝐴) × (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))))))
624xpdom2 7940 . . . . . . . . . 10 ((cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) → ((ℵ‘𝐴) × (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))) ≼ ((ℵ‘𝐴) × (ℵ‘𝐴)))
6318biimpi 205 . . . . . . . . . . 11 (𝐴 ∈ On → ω ⊆ (ℵ‘𝐴))
64 infxpen 8720 . . . . . . . . . . 11 (((ℵ‘𝐴) ∈ On ∧ ω ⊆ (ℵ‘𝐴)) → ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴))
6519, 63, 64sylancr 694 . . . . . . . . . 10 (𝐴 ∈ On → ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴))
66 domentr 7901 . . . . . . . . . 10 ((((ℵ‘𝐴) × (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))) ≼ ((ℵ‘𝐴) × (ℵ‘𝐴)) ∧ ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴)) → ((ℵ‘𝐴) × (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))) ≼ (ℵ‘𝐴))
6762, 65, 66syl2an 493 . . . . . . . . 9 (((cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) ∧ 𝐴 ∈ On) → ((ℵ‘𝐴) × (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))) ≼ (ℵ‘𝐴))
68 nsuceq0 5722 . . . . . . . . . . 11 suc 1𝑜 ≠ ∅
69 dom0 7973 . . . . . . . . . . 11 (suc 1𝑜 ≼ ∅ ↔ suc 1𝑜 = ∅)
7068, 69nemtbir 2877 . . . . . . . . . 10 ¬ suc 1𝑜 ≼ ∅
71 df-2o 7448 . . . . . . . . . . . . . 14 2𝑜 = suc 1𝑜
7271breq1i 4590 . . . . . . . . . . . . 13 (2𝑜𝐵 ↔ suc 1𝑜𝐵)
73 breq2 4587 . . . . . . . . . . . . 13 (𝐵 = ∅ → (suc 1𝑜𝐵 ↔ suc 1𝑜 ≼ ∅))
7472, 73syl5bb 271 . . . . . . . . . . . 12 (𝐵 = ∅ → (2𝑜𝐵 ↔ suc 1𝑜 ≼ ∅))
7574biimpcd 238 . . . . . . . . . . 11 (2𝑜𝐵 → (𝐵 = ∅ → suc 1𝑜 ≼ ∅))
7675adantld 482 . . . . . . . . . 10 (2𝑜𝐵 → ((((ℵ‘𝐴) × (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))) = ∅ ∧ 𝐵 = ∅) → suc 1𝑜 ≼ ∅))
7770, 76mtoi 189 . . . . . . . . 9 (2𝑜𝐵 → ¬ (((ℵ‘𝐴) × (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))) = ∅ ∧ 𝐵 = ∅))
78 mapdom2 8016 . . . . . . . . 9 ((((ℵ‘𝐴) × (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))) ≼ (ℵ‘𝐴) ∧ ¬ (((ℵ‘𝐴) × (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))) = ∅ ∧ 𝐵 = ∅)) → (𝐵𝑚 ((ℵ‘𝐴) × (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))))) ≼ (𝐵𝑚 (ℵ‘𝐴)))
7967, 77, 78syl2an 493 . . . . . . . 8 ((((cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) ∧ 𝐴 ∈ On) ∧ 2𝑜𝐵) → (𝐵𝑚 ((ℵ‘𝐴) × (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))))) ≼ (𝐵𝑚 (ℵ‘𝐴)))
80 domnsym 7971 . . . . . . . 8 ((𝐵𝑚 ((ℵ‘𝐴) × (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))))) ≼ (𝐵𝑚 (ℵ‘𝐴)) → ¬ (𝐵𝑚 (ℵ‘𝐴)) ≺ (𝐵𝑚 ((ℵ‘𝐴) × (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))))))
8179, 80syl 17 . . . . . . 7 ((((cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) ∧ 𝐴 ∈ On) ∧ 2𝑜𝐵) → ¬ (𝐵𝑚 (ℵ‘𝐴)) ≺ (𝐵𝑚 ((ℵ‘𝐴) × (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))))))
8281expl 646 . . . . . 6 ((cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) → ((𝐴 ∈ On ∧ 2𝑜𝐵) → ¬ (𝐵𝑚 (ℵ‘𝐴)) ≺ (𝐵𝑚 ((ℵ‘𝐴) × (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))))))
8382com12 32 . . . . 5 ((𝐴 ∈ On ∧ 2𝑜𝐵) → ((cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) → ¬ (𝐵𝑚 (ℵ‘𝐴)) ≺ (𝐵𝑚 ((ℵ‘𝐴) × (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))))))
8461, 83mt2d 130 . . . 4 ((𝐴 ∈ On ∧ 2𝑜𝐵) → ¬ (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))) ≼ (ℵ‘𝐴))
85 domtri 9257 . . . . . 6 (((cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))) ∈ V ∧ (ℵ‘𝐴) ∈ V) → ((cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) ↔ ¬ (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))))
8652, 4, 85mp2an 704 . . . . 5 ((cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) ↔ ¬ (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))))
8786biimpri 217 . . . 4 (¬ (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))) → (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))) ≼ (ℵ‘𝐴))
8884, 87nsyl2 141 . . 3 ((𝐴 ∈ On ∧ 2𝑜𝐵) → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))))
8988ex 449 . 2 (𝐴 ∈ On → (2𝑜𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))))
90 fndm 5904 . . . . . 6 (ℵ Fn On → dom ℵ = On)
9136, 90ax-mp 5 . . . . 5 dom ℵ = On
9291eleq2i 2680 . . . 4 (𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On)
93 ndmfv 6128 . . . 4 𝐴 ∈ dom ℵ → (ℵ‘𝐴) = ∅)
9492, 93sylnbir 320 . . 3 𝐴 ∈ On → (ℵ‘𝐴) = ∅)
95 1n0 7462 . . . . . 6 1𝑜 ≠ ∅
96 1onn 7606 . . . . . . . 8 1𝑜 ∈ ω
9796elexi 3186 . . . . . . 7 1𝑜 ∈ V
98970sdom 7976 . . . . . 6 (∅ ≺ 1𝑜 ↔ 1𝑜 ≠ ∅)
9995, 98mpbir 220 . . . . 5 ∅ ≺ 1𝑜
100 id 22 . . . . . 6 ((ℵ‘𝐴) = ∅ → (ℵ‘𝐴) = ∅)
101 oveq2 6557 . . . . . . . . . . 11 ((ℵ‘𝐴) = ∅ → (𝐵𝑚 (ℵ‘𝐴)) = (𝐵𝑚 ∅))
102 map0e 7781 . . . . . . . . . . . 12 (𝐵 ∈ V → (𝐵𝑚 ∅) = 1𝑜)
10356, 102ax-mp 5 . . . . . . . . . . 11 (𝐵𝑚 ∅) = 1𝑜
104101, 103syl6eq 2660 . . . . . . . . . 10 ((ℵ‘𝐴) = ∅ → (𝐵𝑚 (ℵ‘𝐴)) = 1𝑜)
105104fveq2d 6107 . . . . . . . . 9 ((ℵ‘𝐴) = ∅ → (card‘(𝐵𝑚 (ℵ‘𝐴))) = (card‘1𝑜))
106 cardnn 8672 . . . . . . . . . 10 (1𝑜 ∈ ω → (card‘1𝑜) = 1𝑜)
10796, 106ax-mp 5 . . . . . . . . 9 (card‘1𝑜) = 1𝑜
108105, 107syl6eq 2660 . . . . . . . 8 ((ℵ‘𝐴) = ∅ → (card‘(𝐵𝑚 (ℵ‘𝐴))) = 1𝑜)
109108fveq2d 6107 . . . . . . 7 ((ℵ‘𝐴) = ∅ → (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))) = (cf‘1𝑜))
110 df-1o 7447 . . . . . . . . 9 1𝑜 = suc ∅
111110fveq2i 6106 . . . . . . . 8 (cf‘1𝑜) = (cf‘suc ∅)
112 0elon 5695 . . . . . . . . 9 ∅ ∈ On
113 cfsuc 8962 . . . . . . . . 9 (∅ ∈ On → (cf‘suc ∅) = 1𝑜)
114112, 113ax-mp 5 . . . . . . . 8 (cf‘suc ∅) = 1𝑜
115111, 114eqtri 2632 . . . . . . 7 (cf‘1𝑜) = 1𝑜
116109, 115syl6eq 2660 . . . . . 6 ((ℵ‘𝐴) = ∅ → (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))) = 1𝑜)
117100, 116breq12d 4596 . . . . 5 ((ℵ‘𝐴) = ∅ → ((ℵ‘𝐴) ≺ (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))) ↔ ∅ ≺ 1𝑜))
11899, 117mpbiri 247 . . . 4 ((ℵ‘𝐴) = ∅ → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))))
119118a1d 25 . . 3 ((ℵ‘𝐴) = ∅ → (2𝑜𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))))
12094, 119syl 17 . 2 𝐴 ∈ On → (2𝑜𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴))))))
12189, 120pm2.61i 175 1 (2𝑜𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵𝑚 (ℵ‘𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  wrex 2897  Vcvv 3173  cun 3538  wss 3540  c0 3874  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643   × cxp 5036  dom cdm 5038  ran crn 5039  Oncon0 5640  suc csuc 5642   Fn wfn 5799  cfv 5804  (class class class)co 6549  ωcom 6957  1𝑜c1o 7440  2𝑜c2o 7441  𝑚 cmap 7744  cen 7838  cdom 7839  csdm 7840  Fincfn 7841  harchar 8344  cardccrd 8644  cale 8645  cfccf 8646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-ac2 9168
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-smo 7330  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-har 8346  df-card 8648  df-aleph 8649  df-cf 8650  df-acn 8651  df-ac 8822
This theorem is referenced by:  alephom  9286
  Copyright terms: Public domain W3C validator