Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme40v Structured version   Visualization version   GIF version

Theorem cdleme40v 34775
Description: Part of proof of Lemma E in [Crawley] p. 113. Change bound variables in 𝑆 / 𝑢𝑉 (but we use 𝑅 / 𝑢𝑉 for convenience since we have its hypotheses available) . (Contributed by NM, 18-Mar-2013.)
Hypotheses
Ref Expression
cdleme40.b 𝐵 = (Base‘𝐾)
cdleme40.l = (le‘𝐾)
cdleme40.j = (join‘𝐾)
cdleme40.m = (meet‘𝐾)
cdleme40.a 𝐴 = (Atoms‘𝐾)
cdleme40.h 𝐻 = (LHyp‘𝐾)
cdleme40.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme40.e 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme40.g 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊)))
cdleme40.i 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
cdleme40.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
cdleme40.d 𝐷 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme40r.y 𝑌 = ((𝑢 𝑈) (𝑄 ((𝑃 𝑢) 𝑊)))
cdleme40r.t 𝑇 = ((𝑣 𝑈) (𝑄 ((𝑃 𝑣) 𝑊)))
cdleme40r.x 𝑋 = ((𝑃 𝑄) (𝑇 ((𝑢 𝑣) 𝑊)))
cdleme40r.o 𝑂 = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋))
cdleme40r.v 𝑉 = if(𝑢 (𝑃 𝑄), 𝑂, 𝑌)
Assertion
Ref Expression
cdleme40v (𝑅𝐴𝑅 / 𝑠𝑁 = 𝑅 / 𝑢𝑉)
Distinct variable groups:   𝑣,𝑢,𝑧,𝐴   𝑢,𝐵,𝑣,𝑧   𝑣,𝐻,𝑧   𝑢, ,𝑣,𝑧   𝑣,𝐾,𝑧   𝑢, ,𝑣,𝑧   𝑢, ,𝑣,𝑧   𝑢,𝑃,𝑣,𝑧   𝑢,𝑄,𝑣,𝑧   𝑣,𝑅,𝑧   𝑢,𝑇   𝑣,𝑈,𝑧   𝑢,𝑊,𝑣,𝑧,𝑠,𝑡,𝑦   𝐴,𝑠   𝑦,𝑡,𝐴   𝐵,𝑠,𝑡,𝑦   𝐸,𝑠   𝑡,𝐻,𝑦   ,𝑠,𝑡,𝑦   𝑡,𝐾,𝑦   ,𝑠,𝑡,𝑦   ,𝑠,𝑡,𝑦   𝑃,𝑠,𝑡,𝑦   𝑄,𝑠,𝑡,𝑦   𝑅,𝑠,𝑡,𝑦   𝑡,𝑈,𝑦   𝑊,𝑠,𝑡,𝑦   𝑦,𝑌   𝑣,𝑡,𝑦   𝑇,𝑠,𝑡,𝑦   𝑣,𝐸,𝑧   𝑢,𝑁,𝑣   𝑢,𝑅   𝑉,𝑠   𝑡,𝑋,𝑦   𝑢,𝑠,𝑧,𝑡,𝑦
Allowed substitution hints:   𝐷(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝑇(𝑧,𝑣)   𝑈(𝑢,𝑠)   𝐸(𝑦,𝑢,𝑡)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝐻(𝑢,𝑠)   𝐼(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝐾(𝑢,𝑠)   𝑁(𝑦,𝑧,𝑡,𝑠)   𝑂(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝑉(𝑦,𝑧,𝑣,𝑢,𝑡)   𝑋(𝑧,𝑣,𝑢,𝑠)   𝑌(𝑧,𝑣,𝑢,𝑡,𝑠)

Proof of Theorem cdleme40v
StepHypRef Expression
1 breq1 4586 . . . . 5 (𝑠 = 𝑢 → (𝑠 (𝑃 𝑄) ↔ 𝑢 (𝑃 𝑄)))
2 cdleme40.g . . . . . . . . . . . 12 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊)))
3 oveq1 6556 . . . . . . . . . . . . . . 15 (𝑠 = 𝑢 → (𝑠 𝑡) = (𝑢 𝑡))
43oveq1d 6564 . . . . . . . . . . . . . 14 (𝑠 = 𝑢 → ((𝑠 𝑡) 𝑊) = ((𝑢 𝑡) 𝑊))
54oveq2d 6565 . . . . . . . . . . . . 13 (𝑠 = 𝑢 → (𝐸 ((𝑠 𝑡) 𝑊)) = (𝐸 ((𝑢 𝑡) 𝑊)))
65oveq2d 6565 . . . . . . . . . . . 12 (𝑠 = 𝑢 → ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊))) = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))
72, 6syl5eq 2656 . . . . . . . . . . 11 (𝑠 = 𝑢𝐺 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))
87eqeq2d 2620 . . . . . . . . . 10 (𝑠 = 𝑢 → (𝑦 = 𝐺𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))))
98imbi2d 329 . . . . . . . . 9 (𝑠 = 𝑢 → (((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺) ↔ ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))))
109ralbidv 2969 . . . . . . . 8 (𝑠 = 𝑢 → (∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺) ↔ ∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))))
1110riotabidv 6513 . . . . . . 7 (𝑠 = 𝑢 → (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺)) = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))))
12 eqeq1 2614 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))) ↔ 𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))))
1312imbi2d 329 . . . . . . . . . 10 (𝑦 = 𝑧 → (((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))) ↔ ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))))
1413ralbidv 2969 . . . . . . . . 9 (𝑦 = 𝑧 → (∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))) ↔ ∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))))
15 breq1 4586 . . . . . . . . . . . . 13 (𝑡 = 𝑣 → (𝑡 𝑊𝑣 𝑊))
1615notbid 307 . . . . . . . . . . . 12 (𝑡 = 𝑣 → (¬ 𝑡 𝑊 ↔ ¬ 𝑣 𝑊))
17 breq1 4586 . . . . . . . . . . . . 13 (𝑡 = 𝑣 → (𝑡 (𝑃 𝑄) ↔ 𝑣 (𝑃 𝑄)))
1817notbid 307 . . . . . . . . . . . 12 (𝑡 = 𝑣 → (¬ 𝑡 (𝑃 𝑄) ↔ ¬ 𝑣 (𝑃 𝑄)))
1916, 18anbi12d 743 . . . . . . . . . . 11 (𝑡 = 𝑣 → ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) ↔ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄))))
20 oveq1 6556 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑣 → (𝑡 𝑈) = (𝑣 𝑈))
21 oveq2 6557 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑣 → (𝑃 𝑡) = (𝑃 𝑣))
2221oveq1d 6564 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑣 → ((𝑃 𝑡) 𝑊) = ((𝑃 𝑣) 𝑊))
2322oveq2d 6565 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑣 → (𝑄 ((𝑃 𝑡) 𝑊)) = (𝑄 ((𝑃 𝑣) 𝑊)))
2420, 23oveq12d 6567 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑣 → ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊))) = ((𝑣 𝑈) (𝑄 ((𝑃 𝑣) 𝑊))))
25 cdleme40.e . . . . . . . . . . . . . . . 16 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
26 cdleme40r.t . . . . . . . . . . . . . . . 16 𝑇 = ((𝑣 𝑈) (𝑄 ((𝑃 𝑣) 𝑊)))
2724, 25, 263eqtr4g 2669 . . . . . . . . . . . . . . 15 (𝑡 = 𝑣𝐸 = 𝑇)
28 oveq2 6557 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑣 → (𝑢 𝑡) = (𝑢 𝑣))
2928oveq1d 6564 . . . . . . . . . . . . . . 15 (𝑡 = 𝑣 → ((𝑢 𝑡) 𝑊) = ((𝑢 𝑣) 𝑊))
3027, 29oveq12d 6567 . . . . . . . . . . . . . 14 (𝑡 = 𝑣 → (𝐸 ((𝑢 𝑡) 𝑊)) = (𝑇 ((𝑢 𝑣) 𝑊)))
3130oveq2d 6565 . . . . . . . . . . . . 13 (𝑡 = 𝑣 → ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))) = ((𝑃 𝑄) (𝑇 ((𝑢 𝑣) 𝑊))))
32 cdleme40r.x . . . . . . . . . . . . 13 𝑋 = ((𝑃 𝑄) (𝑇 ((𝑢 𝑣) 𝑊)))
3331, 32syl6eqr 2662 . . . . . . . . . . . 12 (𝑡 = 𝑣 → ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))) = 𝑋)
3433eqeq2d 2620 . . . . . . . . . . 11 (𝑡 = 𝑣 → (𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))) ↔ 𝑧 = 𝑋))
3519, 34imbi12d 333 . . . . . . . . . 10 (𝑡 = 𝑣 → (((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))) ↔ ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋)))
3635cbvralv 3147 . . . . . . . . 9 (∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))) ↔ ∀𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋))
3714, 36syl6bb 275 . . . . . . . 8 (𝑦 = 𝑧 → (∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))) ↔ ∀𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋)))
3837cbvriotav 6522 . . . . . . 7 (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))) = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋))
3911, 38syl6eq 2660 . . . . . 6 (𝑠 = 𝑢 → (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺)) = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋)))
40 cdleme40.i . . . . . 6 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
41 cdleme40r.o . . . . . 6 𝑂 = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋))
4239, 40, 413eqtr4g 2669 . . . . 5 (𝑠 = 𝑢𝐼 = 𝑂)
43 oveq1 6556 . . . . . . 7 (𝑠 = 𝑢 → (𝑠 𝑈) = (𝑢 𝑈))
44 oveq2 6557 . . . . . . . . 9 (𝑠 = 𝑢 → (𝑃 𝑠) = (𝑃 𝑢))
4544oveq1d 6564 . . . . . . . 8 (𝑠 = 𝑢 → ((𝑃 𝑠) 𝑊) = ((𝑃 𝑢) 𝑊))
4645oveq2d 6565 . . . . . . 7 (𝑠 = 𝑢 → (𝑄 ((𝑃 𝑠) 𝑊)) = (𝑄 ((𝑃 𝑢) 𝑊)))
4743, 46oveq12d 6567 . . . . . 6 (𝑠 = 𝑢 → ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))) = ((𝑢 𝑈) (𝑄 ((𝑃 𝑢) 𝑊))))
48 cdleme40.d . . . . . 6 𝐷 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
49 cdleme40r.y . . . . . 6 𝑌 = ((𝑢 𝑈) (𝑄 ((𝑃 𝑢) 𝑊)))
5047, 48, 493eqtr4g 2669 . . . . 5 (𝑠 = 𝑢𝐷 = 𝑌)
511, 42, 50ifbieq12d 4063 . . . 4 (𝑠 = 𝑢 → if(𝑠 (𝑃 𝑄), 𝐼, 𝐷) = if(𝑢 (𝑃 𝑄), 𝑂, 𝑌))
52 cdleme40.n . . . 4 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
53 cdleme40r.v . . . 4 𝑉 = if(𝑢 (𝑃 𝑄), 𝑂, 𝑌)
5451, 52, 533eqtr4g 2669 . . 3 (𝑠 = 𝑢𝑁 = 𝑉)
5554cbvcsbv 3505 . 2 𝑅 / 𝑠𝑁 = 𝑅 / 𝑢𝑉
5655a1i 11 1 (𝑅𝐴𝑅 / 𝑠𝑁 = 𝑅 / 𝑢𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  csb 3499  ifcif 4036   class class class wbr 4583  cfv 5804  crio 6510  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  meetcmee 16768  Atomscatm 33568  LHypclh 34288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-riota 6511  df-ov 6552
This theorem is referenced by:  cdleme40w  34776
  Copyright terms: Public domain W3C validator