Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme35b Structured version   Visualization version   GIF version

Theorem cdleme35b 34756
Description: Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT. (Contributed by NM, 10-Mar-2013.)
Hypotheses
Ref Expression
cdleme35.l = (le‘𝐾)
cdleme35.j = (join‘𝐾)
cdleme35.m = (meet‘𝐾)
cdleme35.a 𝐴 = (Atoms‘𝐾)
cdleme35.h 𝐻 = (LHyp‘𝐾)
cdleme35.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme35.f 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
Assertion
Ref Expression
cdleme35b ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑄 ((𝑃 𝑅) 𝑊)) (𝑄 (𝑅 𝑈)))

Proof of Theorem cdleme35b
StepHypRef Expression
1 simp11l 1165 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝐾 ∈ HL)
2 hllat 33668 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
31, 2syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝐾 ∈ Lat)
4 simp13l 1169 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑄𝐴)
5 eqid 2610 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
6 cdleme35.a . . . . 5 𝐴 = (Atoms‘𝐾)
75, 6atbase 33594 . . . 4 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
84, 7syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑄 ∈ (Base‘𝐾))
9 simp2rl 1123 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑅𝐴)
10 simp11 1084 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
11 simp12 1085 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
12 simp2l 1080 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑃𝑄)
13 cdleme35.l . . . . . 6 = (le‘𝐾)
14 cdleme35.j . . . . . 6 = (join‘𝐾)
15 cdleme35.m . . . . . 6 = (meet‘𝐾)
16 cdleme35.h . . . . . 6 𝐻 = (LHyp‘𝐾)
17 cdleme35.u . . . . . 6 𝑈 = ((𝑃 𝑄) 𝑊)
1813, 14, 15, 6, 16, 17cdleme0a 34516 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑈𝐴)
1910, 11, 4, 12, 18syl112anc 1322 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑈𝐴)
205, 14, 6hlatjcl 33671 . . . 4 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑈𝐴) → (𝑅 𝑈) ∈ (Base‘𝐾))
211, 9, 19, 20syl3anc 1318 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑅 𝑈) ∈ (Base‘𝐾))
225, 13, 14latlej1 16883 . . 3 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑅 𝑈) ∈ (Base‘𝐾)) → 𝑄 (𝑄 (𝑅 𝑈)))
233, 8, 21, 22syl3anc 1318 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑄 (𝑄 (𝑅 𝑈)))
24 simp12l 1167 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑃𝐴)
255, 6atbase 33594 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2624, 25syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑃 ∈ (Base‘𝐾))
275, 6atbase 33594 . . . . . . 7 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
289, 27syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑅 ∈ (Base‘𝐾))
295, 14latjcl 16874 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑃 𝑅) ∈ (Base‘𝐾))
303, 26, 28, 29syl3anc 1318 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑃 𝑅) ∈ (Base‘𝐾))
31 simp11r 1166 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑊𝐻)
325, 16lhpbase 34302 . . . . . 6 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3331, 32syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑊 ∈ (Base‘𝐾))
345, 15latmcl 16875 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑅) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑅) 𝑊) ∈ (Base‘𝐾))
353, 30, 33, 34syl3anc 1318 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → ((𝑃 𝑅) 𝑊) ∈ (Base‘𝐾))
365, 14latjcl 16874 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑅) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → ((𝑃 𝑅) 𝑄) ∈ (Base‘𝐾))
373, 30, 8, 36syl3anc 1318 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → ((𝑃 𝑅) 𝑄) ∈ (Base‘𝐾))
385, 13, 15latmle1 16899 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑅) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑅) 𝑊) (𝑃 𝑅))
393, 30, 33, 38syl3anc 1318 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → ((𝑃 𝑅) 𝑊) (𝑃 𝑅))
405, 13, 14latlej1 16883 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑅) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑅) ((𝑃 𝑅) 𝑄))
413, 30, 8, 40syl3anc 1318 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑃 𝑅) ((𝑃 𝑅) 𝑄))
425, 13, 3, 35, 30, 37, 39, 41lattrd 16881 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → ((𝑃 𝑅) 𝑊) ((𝑃 𝑅) 𝑄))
4317oveq2i 6560 . . . . . 6 (𝑄 𝑈) = (𝑄 ((𝑃 𝑄) 𝑊))
445, 14, 6hlatjcl 33671 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
451, 24, 4, 44syl3anc 1318 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑃 𝑄) ∈ (Base‘𝐾))
4613, 14, 6hlatlej2 33680 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑄 (𝑃 𝑄))
471, 24, 4, 46syl3anc 1318 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑄 (𝑃 𝑄))
485, 13, 14, 15, 6atmod3i1 34168 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑄𝐴 ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑄 (𝑃 𝑄)) → (𝑄 ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) (𝑄 𝑊)))
491, 4, 45, 33, 47, 48syl131anc 1331 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑄 ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) (𝑄 𝑊)))
50 simp13 1086 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
51 eqid 2610 . . . . . . . . . 10 (1.‘𝐾) = (1.‘𝐾)
5213, 14, 51, 6, 16lhpjat2 34325 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑄 𝑊) = (1.‘𝐾))
5310, 50, 52syl2anc 691 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑄 𝑊) = (1.‘𝐾))
5453oveq2d 6565 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → ((𝑃 𝑄) (𝑄 𝑊)) = ((𝑃 𝑄) (1.‘𝐾)))
55 hlol 33666 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ OL)
561, 55syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝐾 ∈ OL)
575, 15, 51olm11 33532 . . . . . . . 8 ((𝐾 ∈ OL ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (1.‘𝐾)) = (𝑃 𝑄))
5856, 45, 57syl2anc 691 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → ((𝑃 𝑄) (1.‘𝐾)) = (𝑃 𝑄))
5949, 54, 583eqtrd 2648 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑄 ((𝑃 𝑄) 𝑊)) = (𝑃 𝑄))
6043, 59syl5eq 2656 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑄 𝑈) = (𝑃 𝑄))
6160oveq2d 6565 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑅 (𝑄 𝑈)) = (𝑅 (𝑃 𝑄)))
6214, 6hlatj12 33675 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑈𝐴)) → (𝑄 (𝑅 𝑈)) = (𝑅 (𝑄 𝑈)))
631, 4, 9, 19, 62syl13anc 1320 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑄 (𝑅 𝑈)) = (𝑅 (𝑄 𝑈)))
6414, 6hlatjcom 33672 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) = (𝑅 𝑃))
651, 24, 9, 64syl3anc 1318 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑃 𝑅) = (𝑅 𝑃))
6665oveq1d 6564 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → ((𝑃 𝑅) 𝑄) = ((𝑅 𝑃) 𝑄))
6714, 6hlatjass 33674 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑃𝐴𝑄𝐴)) → ((𝑅 𝑃) 𝑄) = (𝑅 (𝑃 𝑄)))
681, 9, 24, 4, 67syl13anc 1320 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → ((𝑅 𝑃) 𝑄) = (𝑅 (𝑃 𝑄)))
6966, 68eqtrd 2644 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → ((𝑃 𝑅) 𝑄) = (𝑅 (𝑃 𝑄)))
7061, 63, 693eqtr4rd 2655 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → ((𝑃 𝑅) 𝑄) = (𝑄 (𝑅 𝑈)))
7142, 70breqtrd 4609 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → ((𝑃 𝑅) 𝑊) (𝑄 (𝑅 𝑈)))
725, 14latjcl 16874 . . . 4 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑅 𝑈) ∈ (Base‘𝐾)) → (𝑄 (𝑅 𝑈)) ∈ (Base‘𝐾))
733, 8, 21, 72syl3anc 1318 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑄 (𝑅 𝑈)) ∈ (Base‘𝐾))
745, 13, 14latjle12 16885 . . 3 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 𝑅) 𝑊) ∈ (Base‘𝐾) ∧ (𝑄 (𝑅 𝑈)) ∈ (Base‘𝐾))) → ((𝑄 (𝑄 (𝑅 𝑈)) ∧ ((𝑃 𝑅) 𝑊) (𝑄 (𝑅 𝑈))) ↔ (𝑄 ((𝑃 𝑅) 𝑊)) (𝑄 (𝑅 𝑈))))
753, 8, 35, 73, 74syl13anc 1320 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → ((𝑄 (𝑄 (𝑅 𝑈)) ∧ ((𝑃 𝑅) 𝑊) (𝑄 (𝑅 𝑈))) ↔ (𝑄 ((𝑃 𝑅) 𝑊)) (𝑄 (𝑅 𝑈))))
7623, 71, 75mpbi2and 958 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑄 ((𝑃 𝑅) 𝑊)) (𝑄 (𝑅 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  meetcmee 16768  1.cp1 16861  Latclat 16868  OLcol 33479  Atomscatm 33568  HLchlt 33655  LHypclh 34288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292
This theorem is referenced by:  cdleme35c  34757
  Copyright terms: Public domain W3C validator