MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdadom1 Structured version   Visualization version   GIF version

Theorem cdadom1 8891
Description: Ordering law for cardinal addition. Exercise 4.56(f) of [Mendelson] p. 258. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
cdadom1 (𝐴𝐵 → (𝐴 +𝑐 𝐶) ≼ (𝐵 +𝑐 𝐶))

Proof of Theorem cdadom1
StepHypRef Expression
1 snex 4835 . . . . 5 {∅} ∈ V
21xpdom1 7944 . . . 4 (𝐴𝐵 → (𝐴 × {∅}) ≼ (𝐵 × {∅}))
3 snex 4835 . . . . . 6 {1𝑜} ∈ V
4 xpexg 6858 . . . . . 6 ((𝐶 ∈ V ∧ {1𝑜} ∈ V) → (𝐶 × {1𝑜}) ∈ V)
53, 4mpan2 703 . . . . 5 (𝐶 ∈ V → (𝐶 × {1𝑜}) ∈ V)
6 domrefg 7876 . . . . 5 ((𝐶 × {1𝑜}) ∈ V → (𝐶 × {1𝑜}) ≼ (𝐶 × {1𝑜}))
75, 6syl 17 . . . 4 (𝐶 ∈ V → (𝐶 × {1𝑜}) ≼ (𝐶 × {1𝑜}))
8 xp01disj 7463 . . . . 5 ((𝐵 × {∅}) ∩ (𝐶 × {1𝑜})) = ∅
9 undom 7933 . . . . 5 ((((𝐴 × {∅}) ≼ (𝐵 × {∅}) ∧ (𝐶 × {1𝑜}) ≼ (𝐶 × {1𝑜})) ∧ ((𝐵 × {∅}) ∩ (𝐶 × {1𝑜})) = ∅) → ((𝐴 × {∅}) ∪ (𝐶 × {1𝑜})) ≼ ((𝐵 × {∅}) ∪ (𝐶 × {1𝑜})))
108, 9mpan2 703 . . . 4 (((𝐴 × {∅}) ≼ (𝐵 × {∅}) ∧ (𝐶 × {1𝑜}) ≼ (𝐶 × {1𝑜})) → ((𝐴 × {∅}) ∪ (𝐶 × {1𝑜})) ≼ ((𝐵 × {∅}) ∪ (𝐶 × {1𝑜})))
112, 7, 10syl2an 493 . . 3 ((𝐴𝐵𝐶 ∈ V) → ((𝐴 × {∅}) ∪ (𝐶 × {1𝑜})) ≼ ((𝐵 × {∅}) ∪ (𝐶 × {1𝑜})))
12 reldom 7847 . . . . 5 Rel ≼
1312brrelexi 5082 . . . 4 (𝐴𝐵𝐴 ∈ V)
14 cdaval 8875 . . . 4 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴 +𝑐 𝐶) = ((𝐴 × {∅}) ∪ (𝐶 × {1𝑜})))
1513, 14sylan 487 . . 3 ((𝐴𝐵𝐶 ∈ V) → (𝐴 +𝑐 𝐶) = ((𝐴 × {∅}) ∪ (𝐶 × {1𝑜})))
1612brrelex2i 5083 . . . 4 (𝐴𝐵𝐵 ∈ V)
17 cdaval 8875 . . . 4 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐵 +𝑐 𝐶) = ((𝐵 × {∅}) ∪ (𝐶 × {1𝑜})))
1816, 17sylan 487 . . 3 ((𝐴𝐵𝐶 ∈ V) → (𝐵 +𝑐 𝐶) = ((𝐵 × {∅}) ∪ (𝐶 × {1𝑜})))
1911, 15, 183brtr4d 4615 . 2 ((𝐴𝐵𝐶 ∈ V) → (𝐴 +𝑐 𝐶) ≼ (𝐵 +𝑐 𝐶))
20 simpr 476 . . . . 5 ((𝐴𝐵 ∧ ¬ 𝐶 ∈ V) → ¬ 𝐶 ∈ V)
2120intnand 953 . . . 4 ((𝐴𝐵 ∧ ¬ 𝐶 ∈ V) → ¬ (𝐴 ∈ V ∧ 𝐶 ∈ V))
22 cdafn 8874 . . . . . 6 +𝑐 Fn (V × V)
23 fndm 5904 . . . . . 6 ( +𝑐 Fn (V × V) → dom +𝑐 = (V × V))
2422, 23ax-mp 5 . . . . 5 dom +𝑐 = (V × V)
2524ndmov 6716 . . . 4 (¬ (𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴 +𝑐 𝐶) = ∅)
2621, 25syl 17 . . 3 ((𝐴𝐵 ∧ ¬ 𝐶 ∈ V) → (𝐴 +𝑐 𝐶) = ∅)
27 ovex 6577 . . . 4 (𝐵 +𝑐 𝐶) ∈ V
28270dom 7975 . . 3 ∅ ≼ (𝐵 +𝑐 𝐶)
2926, 28syl6eqbr 4622 . 2 ((𝐴𝐵 ∧ ¬ 𝐶 ∈ V) → (𝐴 +𝑐 𝐶) ≼ (𝐵 +𝑐 𝐶))
3019, 29pm2.61dan 828 1 (𝐴𝐵 → (𝐴 +𝑐 𝐶) ≼ (𝐵 +𝑐 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cun 3538  cin 3539  c0 3874  {csn 4125   class class class wbr 4583   × cxp 5036  dom cdm 5038   Fn wfn 5799  (class class class)co 6549  1𝑜c1o 7440  cdom 7839   +𝑐 ccda 8872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-1o 7447  df-en 7842  df-dom 7843  df-cda 8873
This theorem is referenced by:  cdadom2  8892  cdalepw  8901  unctb  8910  infdif  8914  gchcdaidm  9369  gchpwdom  9371  gchhar  9380
  Copyright terms: Public domain W3C validator