MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canth4 Structured version   Visualization version   GIF version

Theorem canth4 9348
Description: An "effective" form of Cantor's theorem canth 6508. For any function 𝐹 from the powerset of 𝐴 to 𝐴, there are two definable sets 𝐵 and 𝐶 which witness non-injectivity of 𝐹. Corollary 1.3 of [KanamoriPincus] p. 416. (Contributed by Mario Carneiro, 18-May-2015.)
Hypotheses
Ref Expression
canth4.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
canth4.2 𝐵 = dom 𝑊
canth4.3 𝐶 = ((𝑊𝐵) “ {(𝐹𝐵)})
Assertion
Ref Expression
canth4 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐵𝐴𝐶𝐵 ∧ (𝐹𝐵) = (𝐹𝐶)))
Distinct variable groups:   𝑥,𝑟,𝑦,𝐴   𝐵,𝑟,𝑥,𝑦   𝐷,𝑟,𝑥,𝑦   𝐹,𝑟,𝑥,𝑦   𝑉,𝑟,𝑥,𝑦   𝑦,𝐶   𝑊,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑟)

Proof of Theorem canth4
StepHypRef Expression
1 eqid 2610 . . . . . . . 8 𝐵 = 𝐵
2 eqid 2610 . . . . . . . 8 (𝑊𝐵) = (𝑊𝐵)
31, 2pm3.2i 470 . . . . . . 7 (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))
4 canth4.1 . . . . . . . 8 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
5 elex 3185 . . . . . . . . 9 (𝐴𝑉𝐴 ∈ V)
653ad2ant1 1075 . . . . . . . 8 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → 𝐴 ∈ V)
7 simpl2 1058 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → 𝐹:𝐷𝐴)
8 simp3 1056 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝒫 𝐴 ∩ dom card) ⊆ 𝐷)
98sselda 3568 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → 𝑥𝐷)
107, 9ffvelrnd 6268 . . . . . . . 8 (((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → (𝐹𝑥) ∈ 𝐴)
11 canth4.2 . . . . . . . 8 𝐵 = dom 𝑊
124, 6, 10, 11fpwwe 9347 . . . . . . 7 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ((𝐵𝑊(𝑊𝐵) ∧ (𝐹𝐵) ∈ 𝐵) ↔ (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))))
133, 12mpbiri 247 . . . . . 6 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐵𝑊(𝑊𝐵) ∧ (𝐹𝐵) ∈ 𝐵))
1413simpld 474 . . . . 5 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → 𝐵𝑊(𝑊𝐵))
154, 6fpwwelem 9346 . . . . 5 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐵𝑊(𝑊𝐵) ↔ ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐹‘((𝑊𝐵) “ {𝑦})) = 𝑦))))
1614, 15mpbid 221 . . . 4 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐹‘((𝑊𝐵) “ {𝑦})) = 𝑦)))
1716simpld 474 . . 3 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)))
1817simpld 474 . 2 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → 𝐵𝐴)
19 canth4.3 . . . . 5 𝐶 = ((𝑊𝐵) “ {(𝐹𝐵)})
20 cnvimass 5404 . . . . 5 ((𝑊𝐵) “ {(𝐹𝐵)}) ⊆ dom (𝑊𝐵)
2119, 20eqsstri 3598 . . . 4 𝐶 ⊆ dom (𝑊𝐵)
2217simprd 478 . . . . . 6 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝑊𝐵) ⊆ (𝐵 × 𝐵))
23 dmss 5245 . . . . . 6 ((𝑊𝐵) ⊆ (𝐵 × 𝐵) → dom (𝑊𝐵) ⊆ dom (𝐵 × 𝐵))
2422, 23syl 17 . . . . 5 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → dom (𝑊𝐵) ⊆ dom (𝐵 × 𝐵))
25 dmxpid 5266 . . . . 5 dom (𝐵 × 𝐵) = 𝐵
2624, 25syl6sseq 3614 . . . 4 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → dom (𝑊𝐵) ⊆ 𝐵)
2721, 26syl5ss 3579 . . 3 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → 𝐶𝐵)
2813simprd 478 . . 3 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐹𝐵) ∈ 𝐵)
2916simprd 478 . . . . . . 7 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐹‘((𝑊𝐵) “ {𝑦})) = 𝑦))
3029simpld 474 . . . . . 6 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝑊𝐵) We 𝐵)
31 weso 5029 . . . . . 6 ((𝑊𝐵) We 𝐵 → (𝑊𝐵) Or 𝐵)
3230, 31syl 17 . . . . 5 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝑊𝐵) Or 𝐵)
33 sonr 4980 . . . . 5 (((𝑊𝐵) Or 𝐵 ∧ (𝐹𝐵) ∈ 𝐵) → ¬ (𝐹𝐵)(𝑊𝐵)(𝐹𝐵))
3432, 28, 33syl2anc 691 . . . 4 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ¬ (𝐹𝐵)(𝑊𝐵)(𝐹𝐵))
3519eleq2i 2680 . . . . 5 ((𝐹𝐵) ∈ 𝐶 ↔ (𝐹𝐵) ∈ ((𝑊𝐵) “ {(𝐹𝐵)}))
36 fvex 6113 . . . . . 6 (𝐹𝐵) ∈ V
3736eliniseg 5413 . . . . . 6 ((𝐹𝐵) ∈ V → ((𝐹𝐵) ∈ ((𝑊𝐵) “ {(𝐹𝐵)}) ↔ (𝐹𝐵)(𝑊𝐵)(𝐹𝐵)))
3836, 37ax-mp 5 . . . . 5 ((𝐹𝐵) ∈ ((𝑊𝐵) “ {(𝐹𝐵)}) ↔ (𝐹𝐵)(𝑊𝐵)(𝐹𝐵))
3935, 38bitri 263 . . . 4 ((𝐹𝐵) ∈ 𝐶 ↔ (𝐹𝐵)(𝑊𝐵)(𝐹𝐵))
4034, 39sylnibr 318 . . 3 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ¬ (𝐹𝐵) ∈ 𝐶)
4127, 28, 40ssnelpssd 3681 . 2 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → 𝐶𝐵)
4229simprd 478 . . . 4 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ∀𝑦𝐵 (𝐹‘((𝑊𝐵) “ {𝑦})) = 𝑦)
43 sneq 4135 . . . . . . . . 9 (𝑦 = (𝐹𝐵) → {𝑦} = {(𝐹𝐵)})
4443imaeq2d 5385 . . . . . . . 8 (𝑦 = (𝐹𝐵) → ((𝑊𝐵) “ {𝑦}) = ((𝑊𝐵) “ {(𝐹𝐵)}))
4544, 19syl6eqr 2662 . . . . . . 7 (𝑦 = (𝐹𝐵) → ((𝑊𝐵) “ {𝑦}) = 𝐶)
4645fveq2d 6107 . . . . . 6 (𝑦 = (𝐹𝐵) → (𝐹‘((𝑊𝐵) “ {𝑦})) = (𝐹𝐶))
47 id 22 . . . . . 6 (𝑦 = (𝐹𝐵) → 𝑦 = (𝐹𝐵))
4846, 47eqeq12d 2625 . . . . 5 (𝑦 = (𝐹𝐵) → ((𝐹‘((𝑊𝐵) “ {𝑦})) = 𝑦 ↔ (𝐹𝐶) = (𝐹𝐵)))
4948rspcv 3278 . . . 4 ((𝐹𝐵) ∈ 𝐵 → (∀𝑦𝐵 (𝐹‘((𝑊𝐵) “ {𝑦})) = 𝑦 → (𝐹𝐶) = (𝐹𝐵)))
5028, 42, 49sylc 63 . . 3 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐹𝐶) = (𝐹𝐵))
5150eqcomd 2616 . 2 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐹𝐵) = (𝐹𝐶))
5218, 41, 513jca 1235 1 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐵𝐴𝐶𝐵 ∧ (𝐹𝐵) = (𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cin 3539  wss 3540  wpss 3541  𝒫 cpw 4108  {csn 4125   cuni 4372   class class class wbr 4583  {copab 4642   Or wor 4958   We wwe 4996   × cxp 5036  ccnv 5037  dom cdm 5038  cima 5041  wf 5800  cfv 5804  cardccrd 8644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-1st 7059  df-wrecs 7294  df-recs 7355  df-en 7842  df-oi 8298  df-card 8648
This theorem is referenced by:  canthnumlem  9349  canthp1lem2  9354
  Copyright terms: Public domain W3C validator