Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1450 Structured version   Visualization version   GIF version

Theorem bnj1450 30372
Description: Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1450.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1450.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1450.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1450.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1450.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1450.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1450.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1450.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1450.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1450.10 𝑃 = 𝐻
bnj1450.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1450.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
bnj1450.13 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
bnj1450.14 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
bnj1450.15 (𝜒𝑃 Fn trCl(𝑥, 𝐴, 𝑅))
bnj1450.16 (𝜒𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
bnj1450.17 (𝜃 ↔ (𝜒𝑧𝐸))
bnj1450.18 (𝜂 ↔ (𝜃𝑧 ∈ {𝑥}))
bnj1450.19 (𝜁 ↔ (𝜃𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)))
bnj1450.20 (𝜌 ↔ (𝜁𝑓𝐻𝑧 ∈ dom 𝑓))
bnj1450.21 (𝜎 ↔ (𝜌𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
bnj1450.22 (𝜑 ↔ (𝜎𝑑𝐵𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
bnj1450.23 𝑋 = ⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩
Assertion
Ref Expression
bnj1450 (𝜁 → (𝑄𝑧) = (𝐺𝑊))
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥,𝑦,𝑧   𝐵,𝑓   𝑦,𝐷   𝐸,𝑑,𝑓,𝑦   𝐺,𝑑,𝑓,𝑥,𝑦,𝑧   𝑅,𝑑,𝑓,𝑥,𝑦,𝑧   𝑥,𝑋   𝑧,𝑌   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜓(𝑥,𝑧,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜂(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜁(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜎(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜌(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐵(𝑥,𝑦,𝑧,𝑑)   𝐶(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐷(𝑥,𝑧,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐸(𝑥,𝑧)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑊(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑋(𝑦,𝑧,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑧,𝑓,𝑑)

Proof of Theorem bnj1450
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bnj1450.19 . . . . . . . . 9 (𝜁 ↔ (𝜃𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)))
21simprbi 479 . . . . . . . 8 (𝜁𝑧 ∈ trCl(𝑥, 𝐴, 𝑅))
3 bnj1450.17 . . . . . . . . . 10 (𝜃 ↔ (𝜒𝑧𝐸))
4 bnj1450.15 . . . . . . . . . . 11 (𝜒𝑃 Fn trCl(𝑥, 𝐴, 𝑅))
5 fndm 5904 . . . . . . . . . . 11 (𝑃 Fn trCl(𝑥, 𝐴, 𝑅) → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
64, 5syl 17 . . . . . . . . . 10 (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
73, 6bnj832 30082 . . . . . . . . 9 (𝜃 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
81, 7bnj832 30082 . . . . . . . 8 (𝜁 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
92, 8eleqtrrd 2691 . . . . . . 7 (𝜁𝑧 ∈ dom 𝑃)
10 bnj1450.10 . . . . . . . 8 𝑃 = 𝐻
1110dmeqi 5247 . . . . . . 7 dom 𝑃 = dom 𝐻
129, 11syl6eleq 2698 . . . . . 6 (𝜁𝑧 ∈ dom 𝐻)
13 bnj1450.9 . . . . . . . 8 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
1413bnj1317 30146 . . . . . . 7 (𝑤𝐻 → ∀𝑓 𝑤𝐻)
1514bnj1400 30160 . . . . . 6 dom 𝐻 = 𝑓𝐻 dom 𝑓
1612, 15syl6eleq 2698 . . . . 5 (𝜁𝑧 𝑓𝐻 dom 𝑓)
1716bnj1405 30161 . . . 4 (𝜁 → ∃𝑓𝐻 𝑧 ∈ dom 𝑓)
18 bnj1450.20 . . . 4 (𝜌 ↔ (𝜁𝑓𝐻𝑧 ∈ dom 𝑓))
19 bnj1450.1 . . . . 5 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
20 bnj1450.2 . . . . 5 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
21 bnj1450.3 . . . . 5 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
22 bnj1450.4 . . . . 5 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
23 bnj1450.5 . . . . 5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
24 bnj1450.6 . . . . 5 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
25 bnj1450.7 . . . . 5 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
26 bnj1450.8 . . . . 5 (𝜏′[𝑦 / 𝑥]𝜏)
27 bnj1450.11 . . . . 5 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
28 bnj1450.12 . . . . 5 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
29 bnj1450.13 . . . . 5 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
30 bnj1450.14 . . . . 5 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
31 bnj1450.16 . . . . 5 (𝜒𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
32 bnj1450.18 . . . . 5 (𝜂 ↔ (𝜃𝑧 ∈ {𝑥}))
3319, 20, 21, 22, 23, 24, 25, 26, 13, 10, 27, 28, 29, 30, 4, 31, 3, 32, 1bnj1449 30370 . . . 4 (𝜁 → ∀𝑓𝜁)
3417, 18, 33bnj1521 30175 . . 3 (𝜁 → ∃𝑓𝜌)
3513bnj1436 30164 . . . . . . . . . 10 (𝑓𝐻 → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′)
3618, 35bnj836 30084 . . . . . . . . 9 (𝜌 → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′)
3719, 20, 21, 22, 26bnj1373 30352 . . . . . . . . . 10 (𝜏′ ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
3837rexbii 3023 . . . . . . . . 9 (∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′ ↔ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)(𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
3936, 38sylib 207 . . . . . . . 8 (𝜌 → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)(𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
4039bnj1196 30119 . . . . . . 7 (𝜌 → ∃𝑦(𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ (𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))))
41 3anass 1035 . . . . . . 7 ((𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ↔ (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ (𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))))
4240, 41bnj1198 30120 . . . . . 6 (𝜌 → ∃𝑦(𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
43 bnj1450.21 . . . . . . 7 (𝜎 ↔ (𝜌𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
44 bnj252 30022 . . . . . . 7 ((𝜌𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ↔ (𝜌 ∧ (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))))
4543, 44bitri 263 . . . . . 6 (𝜎 ↔ (𝜌 ∧ (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))))
4619, 20, 21, 22, 23, 24, 25, 26, 13, 10, 27, 28, 29, 30, 4, 31, 3, 32, 1, 18bnj1444 30365 . . . . . 6 (𝜌 → ∀𝑦𝜌)
4742, 45, 46bnj1340 30148 . . . . 5 (𝜌 → ∃𝑦𝜎)
4821bnj1436 30164 . . . . . . . . . . 11 (𝑓𝐶 → ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
4943, 48bnj771 30088 . . . . . . . . . 10 (𝜎 → ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
5049bnj1196 30119 . . . . . . . . 9 (𝜎 → ∃𝑑(𝑑𝐵 ∧ (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))))
51 3anass 1035 . . . . . . . . 9 ((𝑑𝐵𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)) ↔ (𝑑𝐵 ∧ (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))))
5250, 51bnj1198 30120 . . . . . . . 8 (𝜎 → ∃𝑑(𝑑𝐵𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
53 bnj1450.22 . . . . . . . . 9 (𝜑 ↔ (𝜎𝑑𝐵𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
54 bnj252 30022 . . . . . . . . 9 ((𝜎𝑑𝐵𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)) ↔ (𝜎 ∧ (𝑑𝐵𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))))
5553, 54bitri 263 . . . . . . . 8 (𝜑 ↔ (𝜎 ∧ (𝑑𝐵𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))))
56 bnj1450.23 . . . . . . . . 9 𝑋 = ⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩
5719, 20, 21, 22, 23, 24, 25, 26, 13, 10, 27, 28, 29, 30, 4, 31, 3, 32, 1, 18, 43, 53, 56bnj1445 30366 . . . . . . . 8 (𝜎 → ∀𝑑𝜎)
5852, 55, 57bnj1340 30148 . . . . . . 7 (𝜎 → ∃𝑑𝜑)
5953bnj1254 30134 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))
60 fveq2 6103 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑓𝑥) = (𝑓𝑧))
61 id 22 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧𝑥 = 𝑧)
62 bnj602 30239 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → pred(𝑥, 𝐴, 𝑅) = pred(𝑧, 𝐴, 𝑅))
6362reseq2d 5317 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝑓 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑓 ↾ pred(𝑧, 𝐴, 𝑅)))
6461, 63opeq12d 4348 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩)
6564, 20, 563eqtr4g 2669 . . . . . . . . . . . . 13 (𝑥 = 𝑧𝑌 = 𝑋)
6665fveq2d 6107 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝐺𝑌) = (𝐺𝑋))
6760, 66eqeq12d 2625 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝑓𝑥) = (𝐺𝑌) ↔ (𝑓𝑧) = (𝐺𝑋)))
6867cbvralv 3147 . . . . . . . . . 10 (∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌) ↔ ∀𝑧𝑑 (𝑓𝑧) = (𝐺𝑋))
6959, 68sylib 207 . . . . . . . . 9 (𝜑 → ∀𝑧𝑑 (𝑓𝑧) = (𝐺𝑋))
7018simp3bi 1071 . . . . . . . . . . . 12 (𝜌𝑧 ∈ dom 𝑓)
7143, 70bnj769 30086 . . . . . . . . . . 11 (𝜎𝑧 ∈ dom 𝑓)
7253, 71bnj769 30086 . . . . . . . . . 10 (𝜑𝑧 ∈ dom 𝑓)
73 fndm 5904 . . . . . . . . . . 11 (𝑓 Fn 𝑑 → dom 𝑓 = 𝑑)
7453, 73bnj771 30088 . . . . . . . . . 10 (𝜑 → dom 𝑓 = 𝑑)
7572, 74eleqtrd 2690 . . . . . . . . 9 (𝜑𝑧𝑑)
7669, 75bnj1294 30142 . . . . . . . 8 (𝜑 → (𝑓𝑧) = (𝐺𝑋))
7731bnj930 30094 . . . . . . . . . . . . . 14 (𝜒 → Fun 𝑄)
783, 77bnj832 30082 . . . . . . . . . . . . 13 (𝜃 → Fun 𝑄)
791, 78bnj832 30082 . . . . . . . . . . . 12 (𝜁 → Fun 𝑄)
8018, 79bnj835 30083 . . . . . . . . . . 11 (𝜌 → Fun 𝑄)
8143, 80bnj769 30086 . . . . . . . . . 10 (𝜎 → Fun 𝑄)
8253, 81bnj769 30086 . . . . . . . . 9 (𝜑 → Fun 𝑄)
8318simp2bi 1070 . . . . . . . . . . . 12 (𝜌𝑓𝐻)
8443, 83bnj769 30086 . . . . . . . . . . 11 (𝜎𝑓𝐻)
8553, 84bnj769 30086 . . . . . . . . . 10 (𝜑𝑓𝐻)
86 elssuni 4403 . . . . . . . . . . 11 (𝑓𝐻𝑓 𝐻)
8786, 10syl6sseqr 3615 . . . . . . . . . 10 (𝑓𝐻𝑓𝑃)
88 ssun3 3740 . . . . . . . . . . 11 (𝑓𝑃𝑓 ⊆ (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩}))
8988, 28syl6sseqr 3615 . . . . . . . . . 10 (𝑓𝑃𝑓𝑄)
9085, 87, 893syl 18 . . . . . . . . 9 (𝜑𝑓𝑄)
9182, 90, 72bnj1502 30172 . . . . . . . 8 (𝜑 → (𝑄𝑧) = (𝑓𝑧))
9219bnj1517 30174 . . . . . . . . . . . . . . . 16 (𝑑𝐵 → ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)
9353, 92bnj770 30087 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)
9462sseq1d 3595 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → ( pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑 ↔ pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑))
9594cbvralv 3147 . . . . . . . . . . . . . . 15 (∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑 ↔ ∀𝑧𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑)
9693, 95sylib 207 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑧𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑)
9796, 75bnj1294 30142 . . . . . . . . . . . . 13 (𝜑 → pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑)
9897, 74sseqtr4d 3605 . . . . . . . . . . . 12 (𝜑 → pred(𝑧, 𝐴, 𝑅) ⊆ dom 𝑓)
9982, 90, 98bnj1503 30173 . . . . . . . . . . 11 (𝜑 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑓 ↾ pred(𝑧, 𝐴, 𝑅)))
10099opeq2d 4347 . . . . . . . . . 10 (𝜑 → ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩ = ⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩)
101100, 29, 563eqtr4g 2669 . . . . . . . . 9 (𝜑𝑊 = 𝑋)
102101fveq2d 6107 . . . . . . . 8 (𝜑 → (𝐺𝑊) = (𝐺𝑋))
10376, 91, 1023eqtr4d 2654 . . . . . . 7 (𝜑 → (𝑄𝑧) = (𝐺𝑊))
10458, 103bnj593 30069 . . . . . 6 (𝜎 → ∃𝑑(𝑄𝑧) = (𝐺𝑊))
10519, 20, 21, 22, 23, 24, 25, 26, 13, 10, 27, 28, 29bnj1446 30367 . . . . . 6 ((𝑄𝑧) = (𝐺𝑊) → ∀𝑑(𝑄𝑧) = (𝐺𝑊))
106104, 105bnj1397 30159 . . . . 5 (𝜎 → (𝑄𝑧) = (𝐺𝑊))
10747, 106bnj593 30069 . . . 4 (𝜌 → ∃𝑦(𝑄𝑧) = (𝐺𝑊))
10819, 20, 21, 22, 23, 24, 25, 26, 13, 10, 27, 28, 29bnj1447 30368 . . . 4 ((𝑄𝑧) = (𝐺𝑊) → ∀𝑦(𝑄𝑧) = (𝐺𝑊))
109107, 108bnj1397 30159 . . 3 (𝜌 → (𝑄𝑧) = (𝐺𝑊))
11034, 109bnj593 30069 . 2 (𝜁 → ∃𝑓(𝑄𝑧) = (𝐺𝑊))
11119, 20, 21, 22, 23, 24, 25, 26, 13, 10, 27, 28, 29bnj1448 30369 . 2 ((𝑄𝑧) = (𝐺𝑊) → ∀𝑓(𝑄𝑧) = (𝐺𝑊))
112110, 111bnj1397 30159 1 (𝜁 → (𝑄𝑧) = (𝐺𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wne 2780  wral 2896  wrex 2897  {crab 2900  [wsbc 3402  cun 3538  wss 3540  c0 3874  {csn 4125  cop 4131   cuni 4372   ciun 4455   class class class wbr 4583  dom cdm 5038  cres 5040  Fun wfun 5798   Fn wfn 5799  cfv 5804  w-bnj17 30005   predc-bnj14 30007   FrSe w-bnj15 30011   trClc-bnj18 30013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-res 5050  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812  df-bnj17 30006  df-bnj14 30008  df-bnj18 30014
This theorem is referenced by:  bnj1423  30373
  Copyright terms: Public domain W3C validator