MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc3 Structured version   Visualization version   GIF version

Theorem axdc3 9159
Description: Dependent Choice. Axiom DC1 of [Schechter] p. 149, with the addition of an initial value 𝐶. This theorem is weaker than the Axiom of Choice but is stronger than Countable Choice. It shows the existence of a sequence whose values can only be shown to exist (but cannot be constructed explicitly) and also depend on earlier values in the sequence. (Contributed by Mario Carneiro, 27-Jan-2013.)
Hypothesis
Ref Expression
axdc3.1 𝐴 ∈ V
Assertion
Ref Expression
axdc3 ((𝐶𝐴𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Distinct variable groups:   𝐴,𝑔,𝑘   𝐶,𝑔,𝑘   𝑔,𝐹,𝑘

Proof of Theorem axdc3
Dummy variables 𝑛 𝑠 𝑡 𝑥 𝑦 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axdc3.1 . 2 𝐴 ∈ V
2 feq1 5939 . . . . 5 (𝑡 = 𝑠 → (𝑡:suc 𝑛𝐴𝑠:suc 𝑛𝐴))
3 fveq1 6102 . . . . . 6 (𝑡 = 𝑠 → (𝑡‘∅) = (𝑠‘∅))
43eqeq1d 2612 . . . . 5 (𝑡 = 𝑠 → ((𝑡‘∅) = 𝐶 ↔ (𝑠‘∅) = 𝐶))
5 fveq1 6102 . . . . . . . 8 (𝑡 = 𝑠 → (𝑡‘suc 𝑗) = (𝑠‘suc 𝑗))
6 fveq1 6102 . . . . . . . . 9 (𝑡 = 𝑠 → (𝑡𝑗) = (𝑠𝑗))
76fveq2d 6107 . . . . . . . 8 (𝑡 = 𝑠 → (𝐹‘(𝑡𝑗)) = (𝐹‘(𝑠𝑗)))
85, 7eleq12d 2682 . . . . . . 7 (𝑡 = 𝑠 → ((𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)) ↔ (𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠𝑗))))
98ralbidv 2969 . . . . . 6 (𝑡 = 𝑠 → (∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)) ↔ ∀𝑗𝑛 (𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠𝑗))))
10 suceq 5707 . . . . . . . . 9 (𝑗 = 𝑘 → suc 𝑗 = suc 𝑘)
1110fveq2d 6107 . . . . . . . 8 (𝑗 = 𝑘 → (𝑠‘suc 𝑗) = (𝑠‘suc 𝑘))
12 fveq2 6103 . . . . . . . . 9 (𝑗 = 𝑘 → (𝑠𝑗) = (𝑠𝑘))
1312fveq2d 6107 . . . . . . . 8 (𝑗 = 𝑘 → (𝐹‘(𝑠𝑗)) = (𝐹‘(𝑠𝑘)))
1411, 13eleq12d 2682 . . . . . . 7 (𝑗 = 𝑘 → ((𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠𝑗)) ↔ (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))))
1514cbvralv 3147 . . . . . 6 (∀𝑗𝑛 (𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠𝑗)) ↔ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))
169, 15syl6bb 275 . . . . 5 (𝑡 = 𝑠 → (∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)) ↔ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))))
172, 4, 163anbi123d 1391 . . . 4 (𝑡 = 𝑠 → ((𝑡:suc 𝑛𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗))) ↔ (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))))
1817rexbidv 3034 . . 3 (𝑡 = 𝑠 → (∃𝑛 ∈ ω (𝑡:suc 𝑛𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗))) ↔ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))))
1918cbvabv 2734 . 2 {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)))} = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
20 eqid 2610 . 2 (𝑥 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)))} ↦ {𝑦 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)))} ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)}) = (𝑥 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)))} ↦ {𝑦 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)))} ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)})
211, 19, 20axdc3lem4 9158 1 ((𝐶𝐴𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cdif 3537  c0 3874  𝒫 cpw 4108  {csn 4125  cmpt 4643  dom cdm 5038  cres 5040  suc csuc 5642  wf 5800  cfv 5804  ωcom 6957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-dc 9151
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-1o 7447
This theorem is referenced by:  axdc4lem  9160
  Copyright terms: Public domain W3C validator