MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axaddf Structured version   Visualization version   GIF version

Theorem axaddf 9845
Description: Addition is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axaddcl 9851. This construction-dependent theorem should not be referenced directly; instead, use ax-addf 9894. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.)
Assertion
Ref Expression
axaddf + :(ℂ × ℂ)⟶ℂ

Proof of Theorem axaddf
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 moeq 3349 . . . . . . . . 9 ∃*𝑧 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩
21mosubop 4898 . . . . . . . 8 ∃*𝑧𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)
32mosubop 4898 . . . . . . 7 ∃*𝑧𝑤𝑣(𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))
4 anass 679 . . . . . . . . . . 11 (((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩) ↔ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ (𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)))
542exbii 1765 . . . . . . . . . 10 (∃𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩) ↔ ∃𝑢𝑓(𝑥 = ⟨𝑤, 𝑣⟩ ∧ (𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)))
6 19.42vv 1907 . . . . . . . . . 10 (∃𝑢𝑓(𝑥 = ⟨𝑤, 𝑣⟩ ∧ (𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)) ↔ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)))
75, 6bitri 263 . . . . . . . . 9 (∃𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩) ↔ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)))
872exbii 1765 . . . . . . . 8 (∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩) ↔ ∃𝑤𝑣(𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)))
98mobii 2481 . . . . . . 7 (∃*𝑧𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩) ↔ ∃*𝑧𝑤𝑣(𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)))
103, 9mpbir 220 . . . . . 6 ∃*𝑧𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)
1110moani 2513 . . . . 5 ∃*𝑧((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))
1211funoprab 6658 . . . 4 Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
13 df-add 9826 . . . . 5 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
1413funeqi 5824 . . . 4 (Fun + ↔ Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))})
1512, 14mpbir 220 . . 3 Fun +
1613dmeqi 5247 . . . . 5 dom + = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
17 dmoprabss 6640 . . . . 5 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))} ⊆ (ℂ × ℂ)
1816, 17eqsstri 3598 . . . 4 dom + ⊆ (ℂ × ℂ)
19 0ncn 9833 . . . . 5 ¬ ∅ ∈ ℂ
20 df-c 9821 . . . . . . 7 ℂ = (R × R)
21 oveq1 6556 . . . . . . . 8 (⟨𝑧, 𝑤⟩ = 𝑥 → (⟨𝑧, 𝑤⟩ + ⟨𝑣, 𝑢⟩) = (𝑥 + ⟨𝑣, 𝑢⟩))
2221eleq1d 2672 . . . . . . 7 (⟨𝑧, 𝑤⟩ = 𝑥 → ((⟨𝑧, 𝑤⟩ + ⟨𝑣, 𝑢⟩) ∈ (R × R) ↔ (𝑥 + ⟨𝑣, 𝑢⟩) ∈ (R × R)))
23 oveq2 6557 . . . . . . . 8 (⟨𝑣, 𝑢⟩ = 𝑦 → (𝑥 + ⟨𝑣, 𝑢⟩) = (𝑥 + 𝑦))
2423eleq1d 2672 . . . . . . 7 (⟨𝑣, 𝑢⟩ = 𝑦 → ((𝑥 + ⟨𝑣, 𝑢⟩) ∈ (R × R) ↔ (𝑥 + 𝑦) ∈ (R × R)))
25 addcnsr 9835 . . . . . . . 8 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (⟨𝑧, 𝑤⟩ + ⟨𝑣, 𝑢⟩) = ⟨(𝑧 +R 𝑣), (𝑤 +R 𝑢)⟩)
26 addclsr 9783 . . . . . . . . . . 11 ((𝑧R𝑣R) → (𝑧 +R 𝑣) ∈ R)
27 addclsr 9783 . . . . . . . . . . 11 ((𝑤R𝑢R) → (𝑤 +R 𝑢) ∈ R)
2826, 27anim12i 588 . . . . . . . . . 10 (((𝑧R𝑣R) ∧ (𝑤R𝑢R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R))
2928an4s 865 . . . . . . . . 9 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R))
30 opelxpi 5072 . . . . . . . . 9 (((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R) → ⟨(𝑧 +R 𝑣), (𝑤 +R 𝑢)⟩ ∈ (R × R))
3129, 30syl 17 . . . . . . . 8 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ⟨(𝑧 +R 𝑣), (𝑤 +R 𝑢)⟩ ∈ (R × R))
3225, 31eqeltrd 2688 . . . . . . 7 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (⟨𝑧, 𝑤⟩ + ⟨𝑣, 𝑢⟩) ∈ (R × R))
3320, 22, 24, 322optocl 5119 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ (R × R))
3433, 20syl6eleqr 2699 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
3519, 34oprssdm 6713 . . . 4 (ℂ × ℂ) ⊆ dom +
3618, 35eqssi 3584 . . 3 dom + = (ℂ × ℂ)
37 df-fn 5807 . . 3 ( + Fn (ℂ × ℂ) ↔ (Fun + ∧ dom + = (ℂ × ℂ)))
3815, 36, 37mpbir2an 957 . 2 + Fn (ℂ × ℂ)
3934rgen2a 2960 . 2 𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 + 𝑦) ∈ ℂ
40 ffnov 6662 . 2 ( + :(ℂ × ℂ)⟶ℂ ↔ ( + Fn (ℂ × ℂ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 + 𝑦) ∈ ℂ))
4138, 39, 40mpbir2an 957 1 + :(ℂ × ℂ)⟶ℂ
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1475  wex 1695  wcel 1977  ∃*wmo 2459  wral 2896  cop 4131   × cxp 5036  dom cdm 5038  Fun wfun 5798   Fn wfn 5799  wf 5800  (class class class)co 6549  {coprab 6550  Rcnr 9566   +R cplr 9570  cc 9813   + caddc 9818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-omul 7452  df-er 7629  df-ec 7631  df-qs 7635  df-ni 9573  df-pli 9574  df-mi 9575  df-lti 9576  df-plpq 9609  df-mpq 9610  df-ltpq 9611  df-enq 9612  df-nq 9613  df-erq 9614  df-plq 9615  df-mq 9616  df-1nq 9617  df-rq 9618  df-ltnq 9619  df-np 9682  df-plp 9684  df-ltp 9686  df-enr 9756  df-nr 9757  df-plr 9758  df-c 9821  df-add 9826
This theorem is referenced by:  axaddcl  9851
  Copyright terms: Public domain W3C validator