MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  amgm Structured version   Visualization version   GIF version

Theorem amgm 24517
Description: Inequality of arithmetic and geometric means. Here (𝑀 Σg 𝐹) calculates the group sum within the multiplicative monoid of the complex numbers (or in other words, it multiplies the elements 𝐹(𝑥), 𝑥𝐴 together), and (ℂfld Σg 𝐹) calculates the group sum in the additive group (i.e. the sum of the elements). This is Metamath 100 proof #38. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypothesis
Ref Expression
amgm.1 𝑀 = (mulGrp‘ℂfld)
Assertion
Ref Expression
amgm ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (#‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (#‘𝐴)))

Proof of Theorem amgm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 amgm.1 . . . . . . . . 9 𝑀 = (mulGrp‘ℂfld)
2 cnfldbas 19571 . . . . . . . . 9 ℂ = (Base‘ℂfld)
31, 2mgpbas 18318 . . . . . . . 8 ℂ = (Base‘𝑀)
4 cnfld1 19590 . . . . . . . . 9 1 = (1r‘ℂfld)
51, 4ringidval 18326 . . . . . . . 8 1 = (0g𝑀)
6 cnfldmul 19573 . . . . . . . . 9 · = (.r‘ℂfld)
71, 6mgpplusg 18316 . . . . . . . 8 · = (+g𝑀)
8 cncrng 19586 . . . . . . . . 9 fld ∈ CRing
91crngmgp 18378 . . . . . . . . 9 (ℂfld ∈ CRing → 𝑀 ∈ CMnd)
108, 9mp1i 13 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝑀 ∈ CMnd)
11 simpl1 1057 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐴 ∈ Fin)
12 simpl3 1059 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐹:𝐴⟶(0[,)+∞))
13 rge0ssre 12151 . . . . . . . . . 10 (0[,)+∞) ⊆ ℝ
14 ax-resscn 9872 . . . . . . . . . 10 ℝ ⊆ ℂ
1513, 14sstri 3577 . . . . . . . . 9 (0[,)+∞) ⊆ ℂ
16 fss 5969 . . . . . . . . 9 ((𝐹:𝐴⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
1712, 15, 16sylancl 693 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐹:𝐴⟶ℂ)
18 1ex 9914 . . . . . . . . . 10 1 ∈ V
1918a1i 11 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 1 ∈ V)
2017, 11, 19fdmfifsupp 8168 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐹 finSupp 1)
21 disjdif 3992 . . . . . . . . 9 ({𝑥} ∩ (𝐴 ∖ {𝑥})) = ∅
2221a1i 11 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ({𝑥} ∩ (𝐴 ∖ {𝑥})) = ∅)
23 undif2 3996 . . . . . . . . 9 ({𝑥} ∪ (𝐴 ∖ {𝑥})) = ({𝑥} ∪ 𝐴)
24 simprl 790 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝑥𝐴)
2524snssd 4281 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → {𝑥} ⊆ 𝐴)
26 ssequn1 3745 . . . . . . . . . 10 ({𝑥} ⊆ 𝐴 ↔ ({𝑥} ∪ 𝐴) = 𝐴)
2725, 26sylib 207 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ({𝑥} ∪ 𝐴) = 𝐴)
2823, 27syl5req 2657 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐴 = ({𝑥} ∪ (𝐴 ∖ {𝑥})))
293, 5, 7, 10, 11, 17, 20, 22, 28gsumsplit 18151 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg 𝐹) = ((𝑀 Σg (𝐹 ↾ {𝑥})) · (𝑀 Σg (𝐹 ↾ (𝐴 ∖ {𝑥})))))
3012, 25feqresmpt 6160 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐹 ↾ {𝑥}) = (𝑦 ∈ {𝑥} ↦ (𝐹𝑦)))
3130oveq2d 6565 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg (𝐹 ↾ {𝑥})) = (𝑀 Σg (𝑦 ∈ {𝑥} ↦ (𝐹𝑦))))
32 cnring 19587 . . . . . . . . . . 11 fld ∈ Ring
331ringmgp 18376 . . . . . . . . . . 11 (ℂfld ∈ Ring → 𝑀 ∈ Mnd)
3432, 33mp1i 13 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝑀 ∈ Mnd)
3517, 24ffvelrnd 6268 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐹𝑥) ∈ ℂ)
36 fveq2 6103 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
373, 36gsumsn 18177 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ 𝑥𝐴 ∧ (𝐹𝑥) ∈ ℂ) → (𝑀 Σg (𝑦 ∈ {𝑥} ↦ (𝐹𝑦))) = (𝐹𝑥))
3834, 24, 35, 37syl3anc 1318 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg (𝑦 ∈ {𝑥} ↦ (𝐹𝑦))) = (𝐹𝑥))
39 simprr 792 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐹𝑥) = 0)
4031, 38, 393eqtrd 2648 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg (𝐹 ↾ {𝑥})) = 0)
4140oveq1d 6564 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((𝑀 Σg (𝐹 ↾ {𝑥})) · (𝑀 Σg (𝐹 ↾ (𝐴 ∖ {𝑥})))) = (0 · (𝑀 Σg (𝐹 ↾ (𝐴 ∖ {𝑥})))))
42 diffi 8077 . . . . . . . . . 10 (𝐴 ∈ Fin → (𝐴 ∖ {𝑥}) ∈ Fin)
4311, 42syl 17 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐴 ∖ {𝑥}) ∈ Fin)
44 difss 3699 . . . . . . . . . 10 (𝐴 ∖ {𝑥}) ⊆ 𝐴
45 fssres 5983 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ (𝐴 ∖ {𝑥}) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∖ {𝑥})):(𝐴 ∖ {𝑥})⟶ℂ)
4617, 44, 45sylancl 693 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐹 ↾ (𝐴 ∖ {𝑥})):(𝐴 ∖ {𝑥})⟶ℂ)
4746, 43, 19fdmfifsupp 8168 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐹 ↾ (𝐴 ∖ {𝑥})) finSupp 1)
483, 5, 10, 43, 46, 47gsumcl 18139 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg (𝐹 ↾ (𝐴 ∖ {𝑥}))) ∈ ℂ)
4948mul02d 10113 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (0 · (𝑀 Σg (𝐹 ↾ (𝐴 ∖ {𝑥})))) = 0)
5029, 41, 493eqtrd 2648 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg 𝐹) = 0)
5150oveq1d 6564 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (#‘𝐴))) = (0↑𝑐(1 / (#‘𝐴))))
52 simpl2 1058 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐴 ≠ ∅)
53 hashnncl 13018 . . . . . . . . . 10 (𝐴 ∈ Fin → ((#‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
5411, 53syl 17 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((#‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
5552, 54mpbird 246 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (#‘𝐴) ∈ ℕ)
5655nncnd 10913 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (#‘𝐴) ∈ ℂ)
5755nnne0d 10942 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (#‘𝐴) ≠ 0)
5856, 57reccld 10673 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (1 / (#‘𝐴)) ∈ ℂ)
5956, 57recne0d 10674 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (1 / (#‘𝐴)) ≠ 0)
6058, 590cxpd 24256 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (0↑𝑐(1 / (#‘𝐴))) = 0)
6151, 60eqtrd 2644 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (#‘𝐴))) = 0)
62 cnfld0 19589 . . . . . . 7 0 = (0g‘ℂfld)
63 ringcmn 18404 . . . . . . . 8 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
6432, 63mp1i 13 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ℂfld ∈ CMnd)
65 rege0subm 19621 . . . . . . . 8 (0[,)+∞) ∈ (SubMnd‘ℂfld)
6665a1i 11 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (0[,)+∞) ∈ (SubMnd‘ℂfld))
67 c0ex 9913 . . . . . . . . 9 0 ∈ V
6867a1i 11 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 0 ∈ V)
6912, 11, 68fdmfifsupp 8168 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐹 finSupp 0)
7062, 64, 11, 66, 12, 69gsumsubmcl 18142 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (ℂfld Σg 𝐹) ∈ (0[,)+∞))
71 elrege0 12149 . . . . . 6 ((ℂfld Σg 𝐹) ∈ (0[,)+∞) ↔ ((ℂfld Σg 𝐹) ∈ ℝ ∧ 0 ≤ (ℂfld Σg 𝐹)))
7270, 71sylib 207 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((ℂfld Σg 𝐹) ∈ ℝ ∧ 0 ≤ (ℂfld Σg 𝐹)))
7355nnred 10912 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (#‘𝐴) ∈ ℝ)
7455nngt0d 10941 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 0 < (#‘𝐴))
75 divge0 10771 . . . . 5 ((((ℂfld Σg 𝐹) ∈ ℝ ∧ 0 ≤ (ℂfld Σg 𝐹)) ∧ ((#‘𝐴) ∈ ℝ ∧ 0 < (#‘𝐴))) → 0 ≤ ((ℂfld Σg 𝐹) / (#‘𝐴)))
7672, 73, 74, 75syl12anc 1316 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 0 ≤ ((ℂfld Σg 𝐹) / (#‘𝐴)))
7761, 76eqbrtrd 4605 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (#‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (#‘𝐴)))
7877rexlimdvaa 3014 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → (∃𝑥𝐴 (𝐹𝑥) = 0 → ((𝑀 Σg 𝐹)↑𝑐(1 / (#‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (#‘𝐴))))
79 ralnex 2975 . . 3 (∀𝑥𝐴 ¬ (𝐹𝑥) = 0 ↔ ¬ ∃𝑥𝐴 (𝐹𝑥) = 0)
80 simpl1 1057 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → 𝐴 ∈ Fin)
81 simpl2 1058 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → 𝐴 ≠ ∅)
82 simpl3 1059 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → 𝐹:𝐴⟶(0[,)+∞))
83 ffn 5958 . . . . . . 7 (𝐹:𝐴⟶(0[,)+∞) → 𝐹 Fn 𝐴)
8482, 83syl 17 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → 𝐹 Fn 𝐴)
85 ffvelrn 6265 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴⟶(0[,)+∞) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ (0[,)+∞))
86853ad2antl3 1218 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ (0[,)+∞))
87 elrege0 12149 . . . . . . . . . . . . . . 15 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
8886, 87sylib 207 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
8988simprd 478 . . . . . . . . . . . . 13 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → 0 ≤ (𝐹𝑥))
90 0re 9919 . . . . . . . . . . . . . 14 0 ∈ ℝ
9188simpld 474 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
92 leloe 10003 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ) → (0 ≤ (𝐹𝑥) ↔ (0 < (𝐹𝑥) ∨ 0 = (𝐹𝑥))))
9390, 91, 92sylancr 694 . . . . . . . . . . . . 13 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (0 ≤ (𝐹𝑥) ↔ (0 < (𝐹𝑥) ∨ 0 = (𝐹𝑥))))
9489, 93mpbid 221 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (0 < (𝐹𝑥) ∨ 0 = (𝐹𝑥)))
9594ord 391 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (¬ 0 < (𝐹𝑥) → 0 = (𝐹𝑥)))
96 eqcom 2617 . . . . . . . . . . 11 (0 = (𝐹𝑥) ↔ (𝐹𝑥) = 0)
9795, 96syl6ib 240 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (¬ 0 < (𝐹𝑥) → (𝐹𝑥) = 0))
9897con1d 138 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (¬ (𝐹𝑥) = 0 → 0 < (𝐹𝑥)))
99 elrp 11710 . . . . . . . . . . 11 ((𝐹𝑥) ∈ ℝ+ ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 < (𝐹𝑥)))
10099baib 942 . . . . . . . . . 10 ((𝐹𝑥) ∈ ℝ → ((𝐹𝑥) ∈ ℝ+ ↔ 0 < (𝐹𝑥)))
10191, 100syl 17 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → ((𝐹𝑥) ∈ ℝ+ ↔ 0 < (𝐹𝑥)))
10298, 101sylibrd 248 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (¬ (𝐹𝑥) = 0 → (𝐹𝑥) ∈ ℝ+))
103102ralimdva 2945 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → (∀𝑥𝐴 ¬ (𝐹𝑥) = 0 → ∀𝑥𝐴 (𝐹𝑥) ∈ ℝ+))
104103imp 444 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → ∀𝑥𝐴 (𝐹𝑥) ∈ ℝ+)
105 ffnfv 6295 . . . . . 6 (𝐹:𝐴⟶ℝ+ ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ ℝ+))
10684, 104, 105sylanbrc 695 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → 𝐹:𝐴⟶ℝ+)
1071, 80, 81, 106amgmlem 24516 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → ((𝑀 Σg 𝐹)↑𝑐(1 / (#‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (#‘𝐴)))
108107ex 449 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → (∀𝑥𝐴 ¬ (𝐹𝑥) = 0 → ((𝑀 Σg 𝐹)↑𝑐(1 / (#‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (#‘𝐴))))
10979, 108syl5bir 232 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → (¬ ∃𝑥𝐴 (𝐹𝑥) = 0 → ((𝑀 Σg 𝐹)↑𝑐(1 / (#‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (#‘𝐴))))
11078, 109pm2.61d 169 1 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (#‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (#‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  {csn 4125   class class class wbr 4583  cmpt 4643  cres 5040   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  cr 9814  0cc0 9815  1c1 9816   · cmul 9820  +∞cpnf 9950   < clt 9953  cle 9954   / cdiv 10563  cn 10897  +crp 11708  [,)cico 12048  #chash 12979   Σg cgsu 15924  Mndcmnd 17117  SubMndcsubmnd 17157  CMndccmn 18016  mulGrpcmgp 18312  Ringcrg 18370  CRingccrg 18371  fldccnfld 19567  𝑐ccxp 24106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-mulg 17364  df-subg 17414  df-ghm 17481  df-gim 17524  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-drng 18572  df-subrg 18601  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-refld 19770  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator