MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephfp Structured version   Visualization version   GIF version

Theorem alephfp 8814
Description: The aleph function has a fixed point. Similar to Proposition 11.18 of [TakeutiZaring] p. 104, except that we construct an actual example of a fixed point rather than just showing its existence. See alephfp2 8815 for an abbreviated version just showing existence. (Contributed by NM, 6-Nov-2004.) (Proof shortened by Mario Carneiro, 15-May-2015.)
Hypothesis
Ref Expression
alephfplem.1 𝐻 = (rec(ℵ, ω) ↾ ω)
Assertion
Ref Expression
alephfp (ℵ‘ (𝐻 “ ω)) = (𝐻 “ ω)

Proof of Theorem alephfp
Dummy variables 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephfplem.1 . . 3 𝐻 = (rec(ℵ, ω) ↾ ω)
21alephfplem4 8813 . 2 (𝐻 “ ω) ∈ ran ℵ
3 isinfcard 8798 . . 3 ((ω ⊆ (𝐻 “ ω) ∧ (card‘ (𝐻 “ ω)) = (𝐻 “ ω)) ↔ (𝐻 “ ω) ∈ ran ℵ)
4 cardalephex 8796 . . . 4 (ω ⊆ (𝐻 “ ω) → ((card‘ (𝐻 “ ω)) = (𝐻 “ ω) ↔ ∃𝑧 ∈ On (𝐻 “ ω) = (ℵ‘𝑧)))
54biimpa 500 . . 3 ((ω ⊆ (𝐻 “ ω) ∧ (card‘ (𝐻 “ ω)) = (𝐻 “ ω)) → ∃𝑧 ∈ On (𝐻 “ ω) = (ℵ‘𝑧))
63, 5sylbir 224 . 2 ( (𝐻 “ ω) ∈ ran ℵ → ∃𝑧 ∈ On (𝐻 “ ω) = (ℵ‘𝑧))
7 alephle 8794 . . . . . . . . 9 (𝑧 ∈ On → 𝑧 ⊆ (ℵ‘𝑧))
8 alephon 8775 . . . . . . . . . . 11 (ℵ‘𝑧) ∈ On
98onirri 5751 . . . . . . . . . 10 ¬ (ℵ‘𝑧) ∈ (ℵ‘𝑧)
10 frfnom 7417 . . . . . . . . . . . . . 14 (rec(ℵ, ω) ↾ ω) Fn ω
111fneq1i 5899 . . . . . . . . . . . . . 14 (𝐻 Fn ω ↔ (rec(ℵ, ω) ↾ ω) Fn ω)
1210, 11mpbir 220 . . . . . . . . . . . . 13 𝐻 Fn ω
13 fnfun 5902 . . . . . . . . . . . . 13 (𝐻 Fn ω → Fun 𝐻)
14 eluniima 6412 . . . . . . . . . . . . 13 (Fun 𝐻 → (𝑧 (𝐻 “ ω) ↔ ∃𝑣 ∈ ω 𝑧 ∈ (𝐻𝑣)))
1512, 13, 14mp2b 10 . . . . . . . . . . . 12 (𝑧 (𝐻 “ ω) ↔ ∃𝑣 ∈ ω 𝑧 ∈ (𝐻𝑣))
16 alephsson 8806 . . . . . . . . . . . . . . . 16 ran ℵ ⊆ On
171alephfplem3 8812 . . . . . . . . . . . . . . . 16 (𝑣 ∈ ω → (𝐻𝑣) ∈ ran ℵ)
1816, 17sseldi 3566 . . . . . . . . . . . . . . 15 (𝑣 ∈ ω → (𝐻𝑣) ∈ On)
19 alephord2i 8783 . . . . . . . . . . . . . . 15 ((𝐻𝑣) ∈ On → (𝑧 ∈ (𝐻𝑣) → (ℵ‘𝑧) ∈ (ℵ‘(𝐻𝑣))))
2018, 19syl 17 . . . . . . . . . . . . . 14 (𝑣 ∈ ω → (𝑧 ∈ (𝐻𝑣) → (ℵ‘𝑧) ∈ (ℵ‘(𝐻𝑣))))
211alephfplem2 8811 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ ω → (𝐻‘suc 𝑣) = (ℵ‘(𝐻𝑣)))
22 peano2 6978 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ ω → suc 𝑣 ∈ ω)
23 fnfvelrn 6264 . . . . . . . . . . . . . . . . . . . 20 ((𝐻 Fn ω ∧ suc 𝑣 ∈ ω) → (𝐻‘suc 𝑣) ∈ ran 𝐻)
2412, 23mpan 702 . . . . . . . . . . . . . . . . . . 19 (suc 𝑣 ∈ ω → (𝐻‘suc 𝑣) ∈ ran 𝐻)
25 fnima 5923 . . . . . . . . . . . . . . . . . . . 20 (𝐻 Fn ω → (𝐻 “ ω) = ran 𝐻)
2612, 25ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝐻 “ ω) = ran 𝐻
2724, 26syl6eleqr 2699 . . . . . . . . . . . . . . . . . 18 (suc 𝑣 ∈ ω → (𝐻‘suc 𝑣) ∈ (𝐻 “ ω))
2822, 27syl 17 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ ω → (𝐻‘suc 𝑣) ∈ (𝐻 “ ω))
2921, 28eqeltrrd 2689 . . . . . . . . . . . . . . . 16 (𝑣 ∈ ω → (ℵ‘(𝐻𝑣)) ∈ (𝐻 “ ω))
30 elssuni 4403 . . . . . . . . . . . . . . . 16 ((ℵ‘(𝐻𝑣)) ∈ (𝐻 “ ω) → (ℵ‘(𝐻𝑣)) ⊆ (𝐻 “ ω))
3129, 30syl 17 . . . . . . . . . . . . . . 15 (𝑣 ∈ ω → (ℵ‘(𝐻𝑣)) ⊆ (𝐻 “ ω))
3231sseld 3567 . . . . . . . . . . . . . 14 (𝑣 ∈ ω → ((ℵ‘𝑧) ∈ (ℵ‘(𝐻𝑣)) → (ℵ‘𝑧) ∈ (𝐻 “ ω)))
3320, 32syld 46 . . . . . . . . . . . . 13 (𝑣 ∈ ω → (𝑧 ∈ (𝐻𝑣) → (ℵ‘𝑧) ∈ (𝐻 “ ω)))
3433rexlimiv 3009 . . . . . . . . . . . 12 (∃𝑣 ∈ ω 𝑧 ∈ (𝐻𝑣) → (ℵ‘𝑧) ∈ (𝐻 “ ω))
3515, 34sylbi 206 . . . . . . . . . . 11 (𝑧 (𝐻 “ ω) → (ℵ‘𝑧) ∈ (𝐻 “ ω))
36 eleq2 2677 . . . . . . . . . . . 12 ( (𝐻 “ ω) = (ℵ‘𝑧) → (𝑧 (𝐻 “ ω) ↔ 𝑧 ∈ (ℵ‘𝑧)))
37 eleq2 2677 . . . . . . . . . . . 12 ( (𝐻 “ ω) = (ℵ‘𝑧) → ((ℵ‘𝑧) ∈ (𝐻 “ ω) ↔ (ℵ‘𝑧) ∈ (ℵ‘𝑧)))
3836, 37imbi12d 333 . . . . . . . . . . 11 ( (𝐻 “ ω) = (ℵ‘𝑧) → ((𝑧 (𝐻 “ ω) → (ℵ‘𝑧) ∈ (𝐻 “ ω)) ↔ (𝑧 ∈ (ℵ‘𝑧) → (ℵ‘𝑧) ∈ (ℵ‘𝑧))))
3935, 38mpbii 222 . . . . . . . . . 10 ( (𝐻 “ ω) = (ℵ‘𝑧) → (𝑧 ∈ (ℵ‘𝑧) → (ℵ‘𝑧) ∈ (ℵ‘𝑧)))
409, 39mtoi 189 . . . . . . . . 9 ( (𝐻 “ ω) = (ℵ‘𝑧) → ¬ 𝑧 ∈ (ℵ‘𝑧))
417, 40anim12i 588 . . . . . . . 8 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → (𝑧 ⊆ (ℵ‘𝑧) ∧ ¬ 𝑧 ∈ (ℵ‘𝑧)))
42 eloni 5650 . . . . . . . . . 10 (𝑧 ∈ On → Ord 𝑧)
438onordi 5749 . . . . . . . . . 10 Ord (ℵ‘𝑧)
44 ordtri4 5678 . . . . . . . . . 10 ((Ord 𝑧 ∧ Ord (ℵ‘𝑧)) → (𝑧 = (ℵ‘𝑧) ↔ (𝑧 ⊆ (ℵ‘𝑧) ∧ ¬ 𝑧 ∈ (ℵ‘𝑧))))
4542, 43, 44sylancl 693 . . . . . . . . 9 (𝑧 ∈ On → (𝑧 = (ℵ‘𝑧) ↔ (𝑧 ⊆ (ℵ‘𝑧) ∧ ¬ 𝑧 ∈ (ℵ‘𝑧))))
4645adantr 480 . . . . . . . 8 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → (𝑧 = (ℵ‘𝑧) ↔ (𝑧 ⊆ (ℵ‘𝑧) ∧ ¬ 𝑧 ∈ (ℵ‘𝑧))))
4741, 46mpbird 246 . . . . . . 7 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → 𝑧 = (ℵ‘𝑧))
48 eqeq2 2621 . . . . . . . 8 ( (𝐻 “ ω) = (ℵ‘𝑧) → (𝑧 = (𝐻 “ ω) ↔ 𝑧 = (ℵ‘𝑧)))
4948adantl 481 . . . . . . 7 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → (𝑧 = (𝐻 “ ω) ↔ 𝑧 = (ℵ‘𝑧)))
5047, 49mpbird 246 . . . . . 6 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → 𝑧 = (𝐻 “ ω))
5150eqcomd 2616 . . . . 5 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → (𝐻 “ ω) = 𝑧)
5251fveq2d 6107 . . . 4 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → (ℵ‘ (𝐻 “ ω)) = (ℵ‘𝑧))
53 eqeq2 2621 . . . . 5 ( (𝐻 “ ω) = (ℵ‘𝑧) → ((ℵ‘ (𝐻 “ ω)) = (𝐻 “ ω) ↔ (ℵ‘ (𝐻 “ ω)) = (ℵ‘𝑧)))
5453adantl 481 . . . 4 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → ((ℵ‘ (𝐻 “ ω)) = (𝐻 “ ω) ↔ (ℵ‘ (𝐻 “ ω)) = (ℵ‘𝑧)))
5552, 54mpbird 246 . . 3 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → (ℵ‘ (𝐻 “ ω)) = (𝐻 “ ω))
5655rexlimiva 3010 . 2 (∃𝑧 ∈ On (𝐻 “ ω) = (ℵ‘𝑧) → (ℵ‘ (𝐻 “ ω)) = (𝐻 “ ω))
572, 6, 56mp2b 10 1 (ℵ‘ (𝐻 “ ω)) = (𝐻 “ ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897  wss 3540   cuni 4372  ran crn 5039  cres 5040  cima 5041  Ord word 5639  Oncon0 5640  suc csuc 5642  Fun wfun 5798   Fn wfn 5799  cfv 5804  ωcom 6957  reccrdg 7392  cardccrd 8644  cale 8645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-har 8346  df-card 8648  df-aleph 8649
This theorem is referenced by:  alephfp2  8815
  Copyright terms: Public domain W3C validator