MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephexp1 Structured version   Visualization version   GIF version

Theorem alephexp1 9280
Description: An exponentiation law for alephs. Lemma 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
alephexp1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ((ℵ‘𝐴) ↑𝑚 (ℵ‘𝐵)) ≈ (2𝑜𝑚 (ℵ‘𝐵)))

Proof of Theorem alephexp1
StepHypRef Expression
1 alephon 8775 . . . 4 (ℵ‘𝐵) ∈ On
2 onenon 8658 . . . 4 ((ℵ‘𝐵) ∈ On → (ℵ‘𝐵) ∈ dom card)
31, 2mp1i 13 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (ℵ‘𝐵) ∈ dom card)
4 fvex 6113 . . . 4 (ℵ‘𝐵) ∈ V
5 simplr 788 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → 𝐵 ∈ On)
6 alephgeom 8788 . . . . 5 (𝐵 ∈ On ↔ ω ⊆ (ℵ‘𝐵))
75, 6sylib 207 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ω ⊆ (ℵ‘𝐵))
8 ssdomg 7887 . . . 4 ((ℵ‘𝐵) ∈ V → (ω ⊆ (ℵ‘𝐵) → ω ≼ (ℵ‘𝐵)))
94, 7, 8mpsyl 66 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ω ≼ (ℵ‘𝐵))
10 fvex 6113 . . . 4 (ℵ‘𝐴) ∈ V
11 ordom 6966 . . . . . 6 Ord ω
12 2onn 7607 . . . . . 6 2𝑜 ∈ ω
13 ordelss 5656 . . . . . 6 ((Ord ω ∧ 2𝑜 ∈ ω) → 2𝑜 ⊆ ω)
1411, 12, 13mp2an 704 . . . . 5 2𝑜 ⊆ ω
15 simpll 786 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → 𝐴 ∈ On)
16 alephgeom 8788 . . . . . 6 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
1715, 16sylib 207 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ω ⊆ (ℵ‘𝐴))
1814, 17syl5ss 3579 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → 2𝑜 ⊆ (ℵ‘𝐴))
19 ssdomg 7887 . . . 4 ((ℵ‘𝐴) ∈ V → (2𝑜 ⊆ (ℵ‘𝐴) → 2𝑜 ≼ (ℵ‘𝐴)))
2010, 18, 19mpsyl 66 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → 2𝑜 ≼ (ℵ‘𝐴))
21 alephord3 8784 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (ℵ‘𝐴) ⊆ (ℵ‘𝐵)))
22 ssdomg 7887 . . . . . . 7 ((ℵ‘𝐵) ∈ V → ((ℵ‘𝐴) ⊆ (ℵ‘𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵)))
234, 22ax-mp 5 . . . . . 6 ((ℵ‘𝐴) ⊆ (ℵ‘𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵))
2421, 23syl6bi 242 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (ℵ‘𝐴) ≼ (ℵ‘𝐵)))
2524imp 444 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵))
264canth2 7998 . . . . 5 (ℵ‘𝐵) ≺ 𝒫 (ℵ‘𝐵)
27 sdomdom 7869 . . . . 5 ((ℵ‘𝐵) ≺ 𝒫 (ℵ‘𝐵) → (ℵ‘𝐵) ≼ 𝒫 (ℵ‘𝐵))
2826, 27ax-mp 5 . . . 4 (ℵ‘𝐵) ≼ 𝒫 (ℵ‘𝐵)
29 domtr 7895 . . . 4 (((ℵ‘𝐴) ≼ (ℵ‘𝐵) ∧ (ℵ‘𝐵) ≼ 𝒫 (ℵ‘𝐵)) → (ℵ‘𝐴) ≼ 𝒫 (ℵ‘𝐵))
3025, 28, 29sylancl 693 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (ℵ‘𝐴) ≼ 𝒫 (ℵ‘𝐵))
31 mappwen 8818 . . 3 ((((ℵ‘𝐵) ∈ dom card ∧ ω ≼ (ℵ‘𝐵)) ∧ (2𝑜 ≼ (ℵ‘𝐴) ∧ (ℵ‘𝐴) ≼ 𝒫 (ℵ‘𝐵))) → ((ℵ‘𝐴) ↑𝑚 (ℵ‘𝐵)) ≈ 𝒫 (ℵ‘𝐵))
323, 9, 20, 30, 31syl22anc 1319 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ((ℵ‘𝐴) ↑𝑚 (ℵ‘𝐵)) ≈ 𝒫 (ℵ‘𝐵))
334pw2en 7952 . . 3 𝒫 (ℵ‘𝐵) ≈ (2𝑜𝑚 (ℵ‘𝐵))
34 enen2 7986 . . 3 (𝒫 (ℵ‘𝐵) ≈ (2𝑜𝑚 (ℵ‘𝐵)) → (((ℵ‘𝐴) ↑𝑚 (ℵ‘𝐵)) ≈ 𝒫 (ℵ‘𝐵) ↔ ((ℵ‘𝐴) ↑𝑚 (ℵ‘𝐵)) ≈ (2𝑜𝑚 (ℵ‘𝐵))))
3533, 34ax-mp 5 . 2 (((ℵ‘𝐴) ↑𝑚 (ℵ‘𝐵)) ≈ 𝒫 (ℵ‘𝐵) ↔ ((ℵ‘𝐴) ↑𝑚 (ℵ‘𝐵)) ≈ (2𝑜𝑚 (ℵ‘𝐵)))
3632, 35sylib 207 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ((ℵ‘𝐴) ↑𝑚 (ℵ‘𝐵)) ≈ (2𝑜𝑚 (ℵ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wcel 1977  Vcvv 3173  wss 3540  𝒫 cpw 4108   class class class wbr 4583  dom cdm 5038  Ord word 5639  Oncon0 5640  cfv 5804  (class class class)co 6549  ωcom 6957  2𝑜c2o 7441  𝑚 cmap 7744  cen 7838  cdom 7839  csdm 7840  cardccrd 8644  cale 8645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-har 8346  df-card 8648  df-aleph 8649
This theorem is referenced by:  alephexp2  9282
  Copyright terms: Public domain W3C validator