HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjadd Structured version   Visualization version   GIF version

Theorem adjadd 28336
Description: The adjoint of the sum of two operators. Theorem 3.11(iii) of [Beran] p. 106. (Contributed by NM, 22-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjadd ((𝑆 ∈ dom adj𝑇 ∈ dom adj) → (adj‘(𝑆 +op 𝑇)) = ((adj𝑆) +op (adj𝑇)))

Proof of Theorem adjadd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmadjop 28131 . . 3 (𝑆 ∈ dom adj𝑆: ℋ⟶ ℋ)
2 dmadjop 28131 . . 3 (𝑇 ∈ dom adj𝑇: ℋ⟶ ℋ)
3 hoaddcl 28001 . . 3 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇): ℋ⟶ ℋ)
41, 2, 3syl2an 493 . 2 ((𝑆 ∈ dom adj𝑇 ∈ dom adj) → (𝑆 +op 𝑇): ℋ⟶ ℋ)
5 dmadjrn 28138 . . . 4 (𝑆 ∈ dom adj → (adj𝑆) ∈ dom adj)
6 dmadjop 28131 . . . 4 ((adj𝑆) ∈ dom adj → (adj𝑆): ℋ⟶ ℋ)
75, 6syl 17 . . 3 (𝑆 ∈ dom adj → (adj𝑆): ℋ⟶ ℋ)
8 dmadjrn 28138 . . . 4 (𝑇 ∈ dom adj → (adj𝑇) ∈ dom adj)
9 dmadjop 28131 . . . 4 ((adj𝑇) ∈ dom adj → (adj𝑇): ℋ⟶ ℋ)
108, 9syl 17 . . 3 (𝑇 ∈ dom adj → (adj𝑇): ℋ⟶ ℋ)
11 hoaddcl 28001 . . 3 (((adj𝑆): ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ) → ((adj𝑆) +op (adj𝑇)): ℋ⟶ ℋ)
127, 10, 11syl2an 493 . 2 ((𝑆 ∈ dom adj𝑇 ∈ dom adj) → ((adj𝑆) +op (adj𝑇)): ℋ⟶ ℋ)
13 adj2 28177 . . . . . . . 8 ((𝑆 ∈ dom adj𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑆)‘𝑦)))
14133expb 1258 . . . . . . 7 ((𝑆 ∈ dom adj ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑆)‘𝑦)))
1514adantlr 747 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑆)‘𝑦)))
16 adj2 28177 . . . . . . . 8 ((𝑇 ∈ dom adj𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑇)‘𝑦)))
17163expb 1258 . . . . . . 7 ((𝑇 ∈ dom adj ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑇)‘𝑦)))
1817adantll 746 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑇)‘𝑦)))
1915, 18oveq12d 6567 . . . . 5 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑆𝑥) ·ih 𝑦) + ((𝑇𝑥) ·ih 𝑦)) = ((𝑥 ·ih ((adj𝑆)‘𝑦)) + (𝑥 ·ih ((adj𝑇)‘𝑦))))
201ffvelrnda 6267 . . . . . . 7 ((𝑆 ∈ dom adj𝑥 ∈ ℋ) → (𝑆𝑥) ∈ ℋ)
2120ad2ant2r 779 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑆𝑥) ∈ ℋ)
222ffvelrnda 6267 . . . . . . 7 ((𝑇 ∈ dom adj𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
2322ad2ant2lr 780 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑥) ∈ ℋ)
24 simprr 792 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑦 ∈ ℋ)
25 ax-his2 27324 . . . . . 6 (((𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑆𝑥) + (𝑇𝑥)) ·ih 𝑦) = (((𝑆𝑥) ·ih 𝑦) + ((𝑇𝑥) ·ih 𝑦)))
2621, 23, 24, 25syl3anc 1318 . . . . 5 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑆𝑥) + (𝑇𝑥)) ·ih 𝑦) = (((𝑆𝑥) ·ih 𝑦) + ((𝑇𝑥) ·ih 𝑦)))
27 simprl 790 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈ ℋ)
28 adjcl 28175 . . . . . . 7 ((𝑆 ∈ dom adj𝑦 ∈ ℋ) → ((adj𝑆)‘𝑦) ∈ ℋ)
2928ad2ant2rl 781 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((adj𝑆)‘𝑦) ∈ ℋ)
30 adjcl 28175 . . . . . . 7 ((𝑇 ∈ dom adj𝑦 ∈ ℋ) → ((adj𝑇)‘𝑦) ∈ ℋ)
3130ad2ant2l 778 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((adj𝑇)‘𝑦) ∈ ℋ)
32 his7 27331 . . . . . 6 ((𝑥 ∈ ℋ ∧ ((adj𝑆)‘𝑦) ∈ ℋ ∧ ((adj𝑇)‘𝑦) ∈ ℋ) → (𝑥 ·ih (((adj𝑆)‘𝑦) + ((adj𝑇)‘𝑦))) = ((𝑥 ·ih ((adj𝑆)‘𝑦)) + (𝑥 ·ih ((adj𝑇)‘𝑦))))
3327, 29, 31, 32syl3anc 1318 . . . . 5 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (((adj𝑆)‘𝑦) + ((adj𝑇)‘𝑦))) = ((𝑥 ·ih ((adj𝑆)‘𝑦)) + (𝑥 ·ih ((adj𝑇)‘𝑦))))
3419, 26, 333eqtr4rd 2655 . . . 4 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (((adj𝑆)‘𝑦) + ((adj𝑇)‘𝑦))) = (((𝑆𝑥) + (𝑇𝑥)) ·ih 𝑦))
357, 10anim12i 588 . . . . . . 7 ((𝑆 ∈ dom adj𝑇 ∈ dom adj) → ((adj𝑆): ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ))
36 hosval 27983 . . . . . . . 8 (((adj𝑆): ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (((adj𝑆) +op (adj𝑇))‘𝑦) = (((adj𝑆)‘𝑦) + ((adj𝑇)‘𝑦)))
37363expa 1257 . . . . . . 7 ((((adj𝑆): ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ) ∧ 𝑦 ∈ ℋ) → (((adj𝑆) +op (adj𝑇))‘𝑦) = (((adj𝑆)‘𝑦) + ((adj𝑇)‘𝑦)))
3835, 37sylan 487 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ 𝑦 ∈ ℋ) → (((adj𝑆) +op (adj𝑇))‘𝑦) = (((adj𝑆)‘𝑦) + ((adj𝑇)‘𝑦)))
3938adantrl 748 . . . . 5 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((adj𝑆) +op (adj𝑇))‘𝑦) = (((adj𝑆)‘𝑦) + ((adj𝑇)‘𝑦)))
4039oveq2d 6565 . . . 4 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (((adj𝑆) +op (adj𝑇))‘𝑦)) = (𝑥 ·ih (((adj𝑆)‘𝑦) + ((adj𝑇)‘𝑦))))
411, 2anim12i 588 . . . . . . 7 ((𝑆 ∈ dom adj𝑇 ∈ dom adj) → (𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ))
42 hosval 27983 . . . . . . . 8 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
43423expa 1257 . . . . . . 7 (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
4441, 43sylan 487 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
4544adantrr 749 . . . . 5 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
4645oveq1d 6564 . . . 4 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑆 +op 𝑇)‘𝑥) ·ih 𝑦) = (((𝑆𝑥) + (𝑇𝑥)) ·ih 𝑦))
4734, 40, 463eqtr4rd 2655 . . 3 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑆 +op 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((adj𝑆) +op (adj𝑇))‘𝑦)))
4847ralrimivva 2954 . 2 ((𝑆 ∈ dom adj𝑇 ∈ dom adj) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝑆 +op 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((adj𝑆) +op (adj𝑇))‘𝑦)))
49 adjeq 28178 . 2 (((𝑆 +op 𝑇): ℋ⟶ ℋ ∧ ((adj𝑆) +op (adj𝑇)): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝑆 +op 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((adj𝑆) +op (adj𝑇))‘𝑦))) → (adj‘(𝑆 +op 𝑇)) = ((adj𝑆) +op (adj𝑇)))
504, 12, 48, 49syl3anc 1318 1 ((𝑆 ∈ dom adj𝑇 ∈ dom adj) → (adj‘(𝑆 +op 𝑇)) = ((adj𝑆) +op (adj𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  dom cdm 5038  wf 5800  cfv 5804  (class class class)co 6549   + caddc 9818  chil 27160   + cva 27161   ·ih csp 27163   +op chos 27179  adjcado 27196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-hilex 27240  ax-hfvadd 27241  ax-hvcom 27242  ax-hvass 27243  ax-hv0cl 27244  ax-hvaddid 27245  ax-hfvmul 27246  ax-hvmulid 27247  ax-hvdistr2 27250  ax-hvmul0 27251  ax-hfi 27320  ax-his1 27323  ax-his2 27324  ax-his3 27325  ax-his4 27326
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-2 10956  df-cj 13687  df-re 13688  df-im 13689  df-hvsub 27212  df-hosum 27973  df-adjh 28092
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator