MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1sdom Structured version   Visualization version   GIF version

Theorem 1sdom 8048
Description: A set that strictly dominates ordinal 1 has at least 2 different members. (Closely related to 2dom 7915.) (Contributed by Mario Carneiro, 12-Jan-2013.)
Assertion
Ref Expression
1sdom (𝐴𝑉 → (1𝑜𝐴 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem 1sdom
Dummy variables 𝑓 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4587 . 2 (𝑎 = 𝐴 → (1𝑜𝑎 ↔ 1𝑜𝐴))
2 rexeq 3116 . . 3 (𝑎 = 𝐴 → (∃𝑦𝑎 ¬ 𝑥 = 𝑦 ↔ ∃𝑦𝐴 ¬ 𝑥 = 𝑦))
32rexeqbi1dv 3124 . 2 (𝑎 = 𝐴 → (∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦))
4 1onn 7606 . . . 4 1𝑜 ∈ ω
5 sucdom 8042 . . . 4 (1𝑜 ∈ ω → (1𝑜𝑎 ↔ suc 1𝑜𝑎))
64, 5ax-mp 5 . . 3 (1𝑜𝑎 ↔ suc 1𝑜𝑎)
7 df-2o 7448 . . . 4 2𝑜 = suc 1𝑜
87breq1i 4590 . . 3 (2𝑜𝑎 ↔ suc 1𝑜𝑎)
9 2dom 7915 . . . 4 (2𝑜𝑎 → ∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦)
10 df2o3 7460 . . . . 5 2𝑜 = {∅, 1𝑜}
11 vex 3176 . . . . . . . . . . . 12 𝑥 ∈ V
12 vex 3176 . . . . . . . . . . . 12 𝑦 ∈ V
13 0ex 4718 . . . . . . . . . . . 12 ∅ ∈ V
144elexi 3186 . . . . . . . . . . . 12 1𝑜 ∈ V
1511, 12, 13, 14funpr 5858 . . . . . . . . . . 11 (𝑥𝑦 → Fun {⟨𝑥, ∅⟩, ⟨𝑦, 1𝑜⟩})
16 df-ne 2782 . . . . . . . . . . 11 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
17 1n0 7462 . . . . . . . . . . . . . . 15 1𝑜 ≠ ∅
1817necomi 2836 . . . . . . . . . . . . . 14 ∅ ≠ 1𝑜
1913, 14, 11, 12fpr 6326 . . . . . . . . . . . . . 14 (∅ ≠ 1𝑜 → {⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩}:{∅, 1𝑜}⟶{𝑥, 𝑦})
2018, 19ax-mp 5 . . . . . . . . . . . . 13 {⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩}:{∅, 1𝑜}⟶{𝑥, 𝑦}
21 df-f1 5809 . . . . . . . . . . . . 13 ({⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩}:{∅, 1𝑜}–1-1→{𝑥, 𝑦} ↔ ({⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩}:{∅, 1𝑜}⟶{𝑥, 𝑦} ∧ Fun {⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩}))
2220, 21mpbiran 955 . . . . . . . . . . . 12 ({⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩}:{∅, 1𝑜}–1-1→{𝑥, 𝑦} ↔ Fun {⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩})
2313, 11cnvsn 5536 . . . . . . . . . . . . . . 15 {⟨∅, 𝑥⟩} = {⟨𝑥, ∅⟩}
2414, 12cnvsn 5536 . . . . . . . . . . . . . . 15 {⟨1𝑜, 𝑦⟩} = {⟨𝑦, 1𝑜⟩}
2523, 24uneq12i 3727 . . . . . . . . . . . . . 14 ({⟨∅, 𝑥⟩} ∪ {⟨1𝑜, 𝑦⟩}) = ({⟨𝑥, ∅⟩} ∪ {⟨𝑦, 1𝑜⟩})
26 df-pr 4128 . . . . . . . . . . . . . . . 16 {⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩} = ({⟨∅, 𝑥⟩} ∪ {⟨1𝑜, 𝑦⟩})
2726cnveqi 5219 . . . . . . . . . . . . . . 15 {⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩} = ({⟨∅, 𝑥⟩} ∪ {⟨1𝑜, 𝑦⟩})
28 cnvun 5457 . . . . . . . . . . . . . . 15 ({⟨∅, 𝑥⟩} ∪ {⟨1𝑜, 𝑦⟩}) = ({⟨∅, 𝑥⟩} ∪ {⟨1𝑜, 𝑦⟩})
2927, 28eqtri 2632 . . . . . . . . . . . . . 14 {⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩} = ({⟨∅, 𝑥⟩} ∪ {⟨1𝑜, 𝑦⟩})
30 df-pr 4128 . . . . . . . . . . . . . 14 {⟨𝑥, ∅⟩, ⟨𝑦, 1𝑜⟩} = ({⟨𝑥, ∅⟩} ∪ {⟨𝑦, 1𝑜⟩})
3125, 29, 303eqtr4i 2642 . . . . . . . . . . . . 13 {⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩} = {⟨𝑥, ∅⟩, ⟨𝑦, 1𝑜⟩}
3231funeqi 5824 . . . . . . . . . . . 12 (Fun {⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩} ↔ Fun {⟨𝑥, ∅⟩, ⟨𝑦, 1𝑜⟩})
3322, 32bitr2i 264 . . . . . . . . . . 11 (Fun {⟨𝑥, ∅⟩, ⟨𝑦, 1𝑜⟩} ↔ {⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩}:{∅, 1𝑜}–1-1→{𝑥, 𝑦})
3415, 16, 333imtr3i 279 . . . . . . . . . 10 𝑥 = 𝑦 → {⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩}:{∅, 1𝑜}–1-1→{𝑥, 𝑦})
35 prssi 4293 . . . . . . . . . 10 ((𝑥𝑎𝑦𝑎) → {𝑥, 𝑦} ⊆ 𝑎)
36 f1ss 6019 . . . . . . . . . 10 (({⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩}:{∅, 1𝑜}–1-1→{𝑥, 𝑦} ∧ {𝑥, 𝑦} ⊆ 𝑎) → {⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩}:{∅, 1𝑜}–1-1𝑎)
3734, 35, 36syl2an 493 . . . . . . . . 9 ((¬ 𝑥 = 𝑦 ∧ (𝑥𝑎𝑦𝑎)) → {⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩}:{∅, 1𝑜}–1-1𝑎)
38 prex 4836 . . . . . . . . . 10 {⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩} ∈ V
39 f1eq1 6009 . . . . . . . . . 10 (𝑓 = {⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩} → (𝑓:{∅, 1𝑜}–1-1𝑎 ↔ {⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩}:{∅, 1𝑜}–1-1𝑎))
4038, 39spcev 3273 . . . . . . . . 9 ({⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩}:{∅, 1𝑜}–1-1𝑎 → ∃𝑓 𝑓:{∅, 1𝑜}–1-1𝑎)
4137, 40syl 17 . . . . . . . 8 ((¬ 𝑥 = 𝑦 ∧ (𝑥𝑎𝑦𝑎)) → ∃𝑓 𝑓:{∅, 1𝑜}–1-1𝑎)
42 vex 3176 . . . . . . . . 9 𝑎 ∈ V
4342brdom 7853 . . . . . . . 8 ({∅, 1𝑜} ≼ 𝑎 ↔ ∃𝑓 𝑓:{∅, 1𝑜}–1-1𝑎)
4441, 43sylibr 223 . . . . . . 7 ((¬ 𝑥 = 𝑦 ∧ (𝑥𝑎𝑦𝑎)) → {∅, 1𝑜} ≼ 𝑎)
4544expcom 450 . . . . . 6 ((𝑥𝑎𝑦𝑎) → (¬ 𝑥 = 𝑦 → {∅, 1𝑜} ≼ 𝑎))
4645rexlimivv 3018 . . . . 5 (∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦 → {∅, 1𝑜} ≼ 𝑎)
4710, 46syl5eqbr 4618 . . . 4 (∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦 → 2𝑜𝑎)
489, 47impbii 198 . . 3 (2𝑜𝑎 ↔ ∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦)
496, 8, 483bitr2i 287 . 2 (1𝑜𝑎 ↔ ∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦)
501, 3, 49vtoclbg 3240 1 (𝐴𝑉 → (1𝑜𝐴 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  wex 1695  wcel 1977  wne 2780  wrex 2897  cun 3538  wss 3540  c0 3874  {csn 4125  {cpr 4127  cop 4131   class class class wbr 4583  ccnv 5037  suc csuc 5642  Fun wfun 5798  wf 5800  1-1wf1 5801  ωcom 6957  1𝑜c1o 7440  2𝑜c2o 7441  cdom 7839  csdm 7840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-1o 7447  df-2o 7448  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844
This theorem is referenced by:  unxpdomlem3  8051  frgpnabl  18101  isnzr2  19084
  Copyright terms: Public domain W3C validator