Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2 Unicode version

Theorem zorn2 8017
 Description: Zorn's Lemma of [Monk1] p. 117. This theorem is equivalent to the Axiom of Choice and states that every partially ordered set (with an ordering relation ) in which every totally ordered subset has an upper bound, contains at least one maximal element. The main proof consists of lemmas zorn2lem1 8007 through zorn2lem7 8013; this final piece mainly changes bound variables to eliminate the hypotheses of zorn2lem7 8013. (Contributed by NM, 6-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
zornn0.1
Assertion
Ref Expression
zorn2
Distinct variable groups:   ,,,,   ,,,,

Proof of Theorem zorn2
StepHypRef Expression
1 zornn0.1 . . 3
2 numth3 7981 . . 3
31, 2ax-mp 10 . 2
4 zorn2g 8014 . 2
53, 4mp3an1 1269 1
 Colors of variables: wff set class Syntax hints:   wn 5   wi 6   wo 359   wa 360  wal 1532   wceq 1619   wcel 1621  wral 2509  wrex 2510  cvv 2727   wss 3078   class class class wbr 3920   wpo 4205   wor 4206   cdm 4580  ccrd 7452 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-ac2 7973 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-suc 4291  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-iota 6143  df-riota 6190  df-recs 6274  df-en 6750  df-card 7456  df-ac 7627
 Copyright terms: Public domain W3C validator