MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsmet Unicode version

Theorem xpsmet 17778
Description: The direct product of two metric spaces. Definition 14-1.5 of [Gleason] p. 225. (Contributed by NM, 20-Jun-2007.) (Revised by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
xpsds.t  |-  T  =  ( R  X.s  S )
xpsds.x  |-  X  =  ( Base `  R
)
xpsds.y  |-  Y  =  ( Base `  S
)
xpsds.1  |-  ( ph  ->  R  e.  V )
xpsds.2  |-  ( ph  ->  S  e.  W )
xpsds.p  |-  P  =  ( dist `  T
)
xpsds.m  |-  M  =  ( ( dist `  R
)  |`  ( X  X.  X ) )
xpsds.n  |-  N  =  ( ( dist `  S
)  |`  ( Y  X.  Y ) )
xpsmet.3  |-  ( ph  ->  M  e.  ( Met `  X ) )
xpsmet.4  |-  ( ph  ->  N  e.  ( Met `  Y ) )
Assertion
Ref Expression
xpsmet  |-  ( ph  ->  P  e.  ( Met `  ( X  X.  Y
) ) )

Proof of Theorem xpsmet
StepHypRef Expression
1 xpsds.t . . 3  |-  T  =  ( R  X.s  S )
2 xpsds.x . . 3  |-  X  =  ( Base `  R
)
3 xpsds.y . . 3  |-  Y  =  ( Base `  S
)
4 xpsds.1 . . 3  |-  ( ph  ->  R  e.  V )
5 xpsds.2 . . 3  |-  ( ph  ->  S  e.  W )
6 eqid 2253 . . 3  |-  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )  =  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) )
7 eqid 2253 . . 3  |-  (Scalar `  R )  =  (Scalar `  R )
8 eqid 2253 . . 3  |-  ( (Scalar `  R ) X_s `' ( { R }  +c  { S }
) )  =  ( (Scalar `  R ) X_s `' ( { R }  +c  { S } ) )
91, 2, 3, 4, 5, 6, 7, 8xpsval 13348 . 2  |-  ( ph  ->  T  =  ( `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )  "s  ( (Scalar `  R ) X_s `' ( { R }  +c  { S }
) ) ) )
101, 2, 3, 4, 5, 6, 7, 8xpslem 13349 . 2  |-  ( ph  ->  ran  (  x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) )  =  ( Base `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) ) )
116xpsff1o2 13347 . . 3  |-  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) : ( X  X.  Y ) -1-1-onto-> ran  (  x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) )
12 f1ocnv 5342 . . 3  |-  ( ( x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) : ( X  X.  Y ) -1-1-onto-> ran  (  x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) )  ->  `' (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) : ran  (  x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) -1-1-onto-> ( X  X.  Y
) )
1311, 12mp1i 13 . 2  |-  ( ph  ->  `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) ) : ran  (  x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) -1-1-onto-> ( X  X.  Y ) )
14 ovex 5735 . . 3  |-  ( (Scalar `  R ) X_s `' ( { R }  +c  { S }
) )  e.  _V
1514a1i 12 . 2  |-  ( ph  ->  ( (Scalar `  R
) X_s `' ( { R }  +c  { S }
) )  e.  _V )
16 eqid 2253 . 2  |-  ( (
dist `  ( (Scalar `  R ) X_s `' ( { R }  +c  { S }
) ) )  |`  ( ran  (  x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) )  X.  ran  (  x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) )  =  ( ( dist `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  |`  ( ran  (  x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) )  X.  ran  (  x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) )
17 xpsds.p . 2  |-  P  =  ( dist `  T
)
18 eqid 2253 . . . . 5  |-  ( (Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) )  =  ( (Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) )
19 eqid 2253 . . . . 5  |-  ( Base `  ( (Scalar `  R
) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) )  =  ( Base `  (
(Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) )
20 eqid 2253 . . . . 5  |-  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) )  =  (
Base `  ( `' ( { R }  +c  { S } ) `  k ) )
21 eqid 2253 . . . . 5  |-  ( (
dist `  ( `' ( { R }  +c  { S } ) `  k ) )  |`  ( ( Base `  ( `' ( { R }  +c  { S }
) `  k )
)  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) ) ) )  =  ( ( dist `  ( `' ( { R }  +c  { S } ) `  k
) )  |`  (
( Base `  ( `' ( { R }  +c  { S } ) `  k ) )  X.  ( Base `  ( `' ( { R }  +c  { S }
) `  k )
) ) )
22 eqid 2253 . . . . 5  |-  ( dist `  ( (Scalar `  R
) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) )  =  ( dist `  (
(Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) )
23 fvex 5391 . . . . . 6  |-  (Scalar `  R )  e.  _V
2423a1i 12 . . . . 5  |-  ( ph  ->  (Scalar `  R )  e.  _V )
25 2onn 6524 . . . . . 6  |-  2o  e.  om
26 nnfi 6938 . . . . . 6  |-  ( 2o  e.  om  ->  2o  e.  Fin )
2725, 26mp1i 13 . . . . 5  |-  ( ph  ->  2o  e.  Fin )
28 fvex 5391 . . . . . 6  |-  ( `' ( { R }  +c  { S } ) `
 k )  e. 
_V
2928a1i 12 . . . . 5  |-  ( (
ph  /\  k  e.  2o )  ->  ( `' ( { R }  +c  { S } ) `
 k )  e. 
_V )
30 elpri 3564 . . . . . . 7  |-  ( k  e.  { (/) ,  1o }  ->  ( k  =  (/)  \/  k  =  1o ) )
31 df2o3 6378 . . . . . . 7  |-  2o  =  { (/) ,  1o }
3230, 31eleq2s 2345 . . . . . 6  |-  ( k  e.  2o  ->  (
k  =  (/)  \/  k  =  1o ) )
33 xpsmet.3 . . . . . . . . 9  |-  ( ph  ->  M  e.  ( Met `  X ) )
3433adantr 453 . . . . . . . 8  |-  ( (
ph  /\  k  =  (/) )  ->  M  e.  ( Met `  X ) )
35 fveq2 5377 . . . . . . . . . . . . 13  |-  ( k  =  (/)  ->  ( `' ( { R }  +c  { S } ) `
 k )  =  ( `' ( { R }  +c  { S } ) `  (/) ) )
36 xpsc0 13336 . . . . . . . . . . . . . 14  |-  ( R  e.  V  ->  ( `' ( { R }  +c  { S }
) `  (/) )  =  R )
374, 36syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( `' ( { R }  +c  { S } ) `  (/) )  =  R )
3835, 37sylan9eqr 2307 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  =  (/) )  ->  ( `' ( { R }  +c  { S } ) `  k )  =  R )
3938fveq2d 5381 . . . . . . . . . . 11  |-  ( (
ph  /\  k  =  (/) )  ->  ( dist `  ( `' ( { R }  +c  { S } ) `  k
) )  =  (
dist `  R )
)
4038fveq2d 5381 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  =  (/) )  ->  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) )  =  (
Base `  R )
)
4140, 2syl6eqr 2303 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  =  (/) )  ->  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) )  =  X )
4241, 41xpeq12d 4621 . . . . . . . . . . 11  |-  ( (
ph  /\  k  =  (/) )  ->  ( ( Base `  ( `' ( { R }  +c  { S } ) `  k ) )  X.  ( Base `  ( `' ( { R }  +c  { S }
) `  k )
) )  =  ( X  X.  X ) )
4339, 42reseq12d 4863 . . . . . . . . . 10  |-  ( (
ph  /\  k  =  (/) )  ->  ( ( dist `  ( `' ( { R }  +c  { S } ) `  k ) )  |`  ( ( Base `  ( `' ( { R }  +c  { S }
) `  k )
)  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) ) ) )  =  ( ( dist `  R )  |`  ( X  X.  X ) ) )
44 xpsds.m . . . . . . . . . 10  |-  M  =  ( ( dist `  R
)  |`  ( X  X.  X ) )
4543, 44syl6eqr 2303 . . . . . . . . 9  |-  ( (
ph  /\  k  =  (/) )  ->  ( ( dist `  ( `' ( { R }  +c  { S } ) `  k ) )  |`  ( ( Base `  ( `' ( { R }  +c  { S }
) `  k )
)  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) ) ) )  =  M )
4641fveq2d 5381 . . . . . . . . 9  |-  ( (
ph  /\  k  =  (/) )  ->  ( Met `  ( Base `  ( `' ( { R }  +c  { S }
) `  k )
) )  =  ( Met `  X ) )
4745, 46eleq12d 2321 . . . . . . . 8  |-  ( (
ph  /\  k  =  (/) )  ->  ( (
( dist `  ( `' ( { R }  +c  { S } ) `  k ) )  |`  ( ( Base `  ( `' ( { R }  +c  { S }
) `  k )
)  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) ) ) )  e.  ( Met `  ( Base `  ( `' ( { R }  +c  { S } ) `  k ) ) )  <-> 
M  e.  ( Met `  X ) ) )
4834, 47mpbird 225 . . . . . . 7  |-  ( (
ph  /\  k  =  (/) )  ->  ( ( dist `  ( `' ( { R }  +c  { S } ) `  k ) )  |`  ( ( Base `  ( `' ( { R }  +c  { S }
) `  k )
)  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) ) ) )  e.  ( Met `  ( Base `  ( `' ( { R }  +c  { S } ) `  k ) ) ) )
49 xpsmet.4 . . . . . . . . 9  |-  ( ph  ->  N  e.  ( Met `  Y ) )
5049adantr 453 . . . . . . . 8  |-  ( (
ph  /\  k  =  1o )  ->  N  e.  ( Met `  Y
) )
51 fveq2 5377 . . . . . . . . . . . . 13  |-  ( k  =  1o  ->  ( `' ( { R }  +c  { S }
) `  k )  =  ( `' ( { R }  +c  { S } ) `  1o ) )
52 xpsc1 13337 . . . . . . . . . . . . . 14  |-  ( S  e.  W  ->  ( `' ( { R }  +c  { S }
) `  1o )  =  S )
535, 52syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( `' ( { R }  +c  { S } ) `  1o )  =  S )
5451, 53sylan9eqr 2307 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  =  1o )  ->  ( `' ( { R }  +c  { S } ) `
 k )  =  S )
5554fveq2d 5381 . . . . . . . . . . 11  |-  ( (
ph  /\  k  =  1o )  ->  ( dist `  ( `' ( { R }  +c  { S } ) `  k
) )  =  (
dist `  S )
)
5654fveq2d 5381 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  =  1o )  ->  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) )  =  (
Base `  S )
)
5756, 3syl6eqr 2303 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  =  1o )  ->  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) )  =  Y )
5857, 57xpeq12d 4621 . . . . . . . . . . 11  |-  ( (
ph  /\  k  =  1o )  ->  ( (
Base `  ( `' ( { R }  +c  { S } ) `  k ) )  X.  ( Base `  ( `' ( { R }  +c  { S }
) `  k )
) )  =  ( Y  X.  Y ) )
5955, 58reseq12d 4863 . . . . . . . . . 10  |-  ( (
ph  /\  k  =  1o )  ->  ( (
dist `  ( `' ( { R }  +c  { S } ) `  k ) )  |`  ( ( Base `  ( `' ( { R }  +c  { S }
) `  k )
)  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) ) ) )  =  ( ( dist `  S )  |`  ( Y  X.  Y ) ) )
60 xpsds.n . . . . . . . . . 10  |-  N  =  ( ( dist `  S
)  |`  ( Y  X.  Y ) )
6159, 60syl6eqr 2303 . . . . . . . . 9  |-  ( (
ph  /\  k  =  1o )  ->  ( (
dist `  ( `' ( { R }  +c  { S } ) `  k ) )  |`  ( ( Base `  ( `' ( { R }  +c  { S }
) `  k )
)  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) ) ) )  =  N )
6257fveq2d 5381 . . . . . . . . 9  |-  ( (
ph  /\  k  =  1o )  ->  ( Met `  ( Base `  ( `' ( { R }  +c  { S }
) `  k )
) )  =  ( Met `  Y ) )
6361, 62eleq12d 2321 . . . . . . . 8  |-  ( (
ph  /\  k  =  1o )  ->  ( ( ( dist `  ( `' ( { R }  +c  { S }
) `  k )
)  |`  ( ( Base `  ( `' ( { R }  +c  { S } ) `  k
) )  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k ) ) ) )  e.  ( Met `  ( Base `  ( `' ( { R }  +c  { S }
) `  k )
) )  <->  N  e.  ( Met `  Y ) ) )
6450, 63mpbird 225 . . . . . . 7  |-  ( (
ph  /\  k  =  1o )  ->  ( (
dist `  ( `' ( { R }  +c  { S } ) `  k ) )  |`  ( ( Base `  ( `' ( { R }  +c  { S }
) `  k )
)  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) ) ) )  e.  ( Met `  ( Base `  ( `' ( { R }  +c  { S } ) `  k ) ) ) )
6548, 64jaodan 763 . . . . . 6  |-  ( (
ph  /\  ( k  =  (/)  \/  k  =  1o ) )  -> 
( ( dist `  ( `' ( { R }  +c  { S }
) `  k )
)  |`  ( ( Base `  ( `' ( { R }  +c  { S } ) `  k
) )  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k ) ) ) )  e.  ( Met `  ( Base `  ( `' ( { R }  +c  { S }
) `  k )
) ) )
6632, 65sylan2 462 . . . . 5  |-  ( (
ph  /\  k  e.  2o )  ->  ( (
dist `  ( `' ( { R }  +c  { S } ) `  k ) )  |`  ( ( Base `  ( `' ( { R }  +c  { S }
) `  k )
)  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) ) ) )  e.  ( Met `  ( Base `  ( `' ( { R }  +c  { S } ) `  k ) ) ) )
6718, 19, 20, 21, 22, 24, 27, 29, 66prdsmet 17766 . . . 4  |-  ( ph  ->  ( dist `  (
(Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) )  e.  ( Met `  ( Base `  ( (Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) ) ) )
68 xpscfn 13335 . . . . . . . . 9  |-  ( ( R  e.  V  /\  S  e.  W )  ->  `' ( { R }  +c  { S }
)  Fn  2o )
694, 5, 68syl2anc 645 . . . . . . . 8  |-  ( ph  ->  `' ( { R }  +c  { S }
)  Fn  2o )
70 dffn5 5420 . . . . . . . 8  |-  ( `' ( { R }  +c  { S } )  Fn  2o  <->  `' ( { R }  +c  { S } )  =  ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) )
7169, 70sylib 190 . . . . . . 7  |-  ( ph  ->  `' ( { R }  +c  { S }
)  =  ( k  e.  2o  |->  ( `' ( { R }  +c  { S } ) `
 k ) ) )
7271oveq2d 5726 . . . . . 6  |-  ( ph  ->  ( (Scalar `  R
) X_s `' ( { R }  +c  { S }
) )  =  ( (Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) )
7372fveq2d 5381 . . . . 5  |-  ( ph  ->  ( dist `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  =  (
dist `  ( (Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) ) )
7472fveq2d 5381 . . . . . . 7  |-  ( ph  ->  ( Base `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  =  (
Base `  ( (Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) ) )
7510, 74eqtrd 2285 . . . . . 6  |-  ( ph  ->  ran  (  x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) )  =  ( Base `  (
(Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) ) )
7675fveq2d 5381 . . . . 5  |-  ( ph  ->  ( Met `  ran  (  x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) )  =  ( Met `  ( Base `  ( (Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) ) ) )
7773, 76eleq12d 2321 . . . 4  |-  ( ph  ->  ( ( dist `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  e.  ( Met `  ran  (  x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) )  <->  ( dist `  ( (Scalar `  R
) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) )  e.  ( Met `  ( Base `  ( (Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) ) ) ) )
7867, 77mpbird 225 . . 3  |-  ( ph  ->  ( dist `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  e.  ( Met `  ran  (  x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) )
79 ssid 3118 . . 3  |-  ran  (  x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) )  C_  ran  (  x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )
80 metres2 17759 . . 3  |-  ( ( ( dist `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  e.  ( Met `  ran  (  x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) )  /\  ran  (  x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )  C_  ran  (  x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) )  -> 
( ( dist `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  |`  ( ran  (  x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) )  X.  ran  (  x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) )  e.  ( Met `  ran  (  x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) )
8178, 79, 80sylancl 646 . 2  |-  ( ph  ->  ( ( dist `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  |`  ( ran  (  x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) )  X.  ran  (  x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) )  e.  ( Met `  ran  (  x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) )
829, 10, 13, 15, 16, 17, 81imasf1omet 17772 1  |-  ( ph  ->  P  e.  ( Met `  ( X  X.  Y
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621   _Vcvv 2727    C_ wss 3078   (/)c0 3362   {csn 3544   {cpr 3545    e. cmpt 3974   omcom 4547    X. cxp 4578   `'ccnv 4579   ran crn 4581    |` cres 4582    Fn wfn 4587   -1-1-onto->wf1o 4591   ` cfv 4592  (class class class)co 5710    e. cmpt2 5712   1oc1o 6358   2oc2o 6359   Fincfn 6749    +c ccda 7677   Basecbs 13022  Scalarcsca 13085   distcds 13091   X_scprds 13220    X.s cxps 13283   Metcme 16202
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-er 6546  df-map 6660  df-ixp 6704  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-sup 7078  df-oi 7109  df-card 7456  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-dec 10004  df-uz 10110  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-icc 10541  df-fz 10661  df-fzo 10749  df-seq 10925  df-hash 11216  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-sca 13098  df-vsca 13099  df-tset 13101  df-ple 13102  df-ds 13104  df-hom 13106  df-cco 13107  df-prds 13222  df-xrs 13277  df-0g 13278  df-gsum 13279  df-imas 13285  df-xps 13287  df-mre 13361  df-mrc 13362  df-acs 13363  df-mnd 14202  df-submnd 14251  df-mulg 14327  df-cntz 14628  df-cmn 14926  df-xmet 16205  df-met 16206
  Copyright terms: Public domain W3C validator