MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpdom1g Unicode version

Theorem xpdom1g 6844
Description: Dominance law for cross product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 25-Mar-2006.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
xpdom1g  |-  ( ( C  e.  V  /\  A  ~<_  B )  -> 
( A  X.  C
)  ~<_  ( B  X.  C ) )

Proof of Theorem xpdom1g
StepHypRef Expression
1 reldom 6755 . . . 4  |-  Rel  ~<_
21brrelexi 4636 . . 3  |-  ( A  ~<_  B  ->  A  e.  _V )
3 xpcomeng 6839 . . . 4  |-  ( ( A  e.  _V  /\  C  e.  V )  ->  ( A  X.  C
)  ~~  ( C  X.  A ) )
43ancoms 441 . . 3  |-  ( ( C  e.  V  /\  A  e.  _V )  ->  ( A  X.  C
)  ~~  ( C  X.  A ) )
52, 4sylan2 462 . 2  |-  ( ( C  e.  V  /\  A  ~<_  B )  -> 
( A  X.  C
)  ~~  ( C  X.  A ) )
6 xpdom2g 6843 . . 3  |-  ( ( C  e.  V  /\  A  ~<_  B )  -> 
( C  X.  A
)  ~<_  ( C  X.  B ) )
71brrelex2i 4637 . . . 4  |-  ( A  ~<_  B  ->  B  e.  _V )
8 xpcomeng 6839 . . . 4  |-  ( ( C  e.  V  /\  B  e.  _V )  ->  ( C  X.  B
)  ~~  ( B  X.  C ) )
97, 8sylan2 462 . . 3  |-  ( ( C  e.  V  /\  A  ~<_  B )  -> 
( C  X.  B
)  ~~  ( B  X.  C ) )
10 domentr 6805 . . 3  |-  ( ( ( C  X.  A
)  ~<_  ( C  X.  B )  /\  ( C  X.  B )  ~~  ( B  X.  C
) )  ->  ( C  X.  A )  ~<_  ( B  X.  C ) )
116, 9, 10syl2anc 645 . 2  |-  ( ( C  e.  V  /\  A  ~<_  B )  -> 
( C  X.  A
)  ~<_  ( B  X.  C ) )
12 endomtr 6804 . 2  |-  ( ( ( A  X.  C
)  ~~  ( C  X.  A )  /\  ( C  X.  A )  ~<_  ( B  X.  C ) )  ->  ( A  X.  C )  ~<_  ( B  X.  C ) )
135, 11, 12syl2anc 645 1  |-  ( ( C  e.  V  /\  A  ~<_  B )  -> 
( A  X.  C
)  ~<_  ( B  X.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    e. wcel 1621   _Vcvv 2727   class class class wbr 3920    X. cxp 4578    ~~ cen 6746    ~<_ cdom 6747
This theorem is referenced by:  xpdom1  6846  xpen  6909  infpwfien  7573  iunctb  8076  canthp1lem1  8154  gchxpidm  8171
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-1st 5974  df-2nd 5975  df-en 6750  df-dom 6751
  Copyright terms: Public domain W3C validator