Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wfr3g Unicode version

Theorem wfr3g 23423
Description: Functions defined by well founded recursion are identical up to relation, domain, and characteristic function. (Contributed by Scott Fenton, 11-Feb-2011.)
Assertion
Ref Expression
wfr3g  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  F  =  G )
Distinct variable groups:    y, A    y, F    y, G    y, H    y, R

Proof of Theorem wfr3g
StepHypRef Expression
1 r19.26 2637 . . . . . . 7  |-  ( A. y  e.  A  (
( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) )  <->  ( A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )
2 fveq2 5377 . . . . . . . . . . . 12  |-  ( z  =  w  ->  ( F `  z )  =  ( F `  w ) )
3 fveq2 5377 . . . . . . . . . . . 12  |-  ( z  =  w  ->  ( G `  z )  =  ( G `  w ) )
42, 3eqeq12d 2267 . . . . . . . . . . 11  |-  ( z  =  w  ->  (
( F `  z
)  =  ( G `
 z )  <->  ( F `  w )  =  ( G `  w ) ) )
54imbi2d 309 . . . . . . . . . 10  |-  ( z  =  w  ->  (
( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. y  e.  A  (
( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  z )  =  ( G `  z ) )  <->  ( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A ,  y )
) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  ( F `  w )  =  ( G `  w ) ) ) )
6 nfv 1629 . . . . . . . . . . . 12  |-  F/ w
( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )
76ra5 3005 . . . . . . . . . . 11  |-  ( A. w  e.  Pred  ( R ,  A ,  z ) ( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A ,  y )
) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  ( F `  w )  =  ( G `  w ) )  -> 
( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. y  e.  A  (
( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  A. w  e.  Pred  ( R ,  A , 
z ) ( F `
 w )  =  ( G `  w
) ) )
8 fveq2 5377 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  z  ->  ( F `  y )  =  ( F `  z ) )
9 predeq3 23339 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  z  ->  Pred ( R ,  A , 
y )  =  Pred ( R ,  A , 
z ) )
109reseq2d 4862 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  z  ->  ( F  |`  Pred ( R ,  A ,  y )
)  =  ( F  |`  Pred ( R ,  A ,  z )
) )
1110fveq2d 5381 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  z  ->  ( H `  ( F  |` 
Pred ( R ,  A ,  y )
) )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) ) )
128, 11eqeq12d 2267 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  z  ->  (
( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  <->  ( F `  z )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) ) ) )
13 fveq2 5377 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  z  ->  ( G `  y )  =  ( G `  z ) )
149reseq2d 4862 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  z  ->  ( G  |`  Pred ( R ,  A ,  y )
)  =  ( G  |`  Pred ( R ,  A ,  z )
) )
1514fveq2d 5381 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  z  ->  ( H `  ( G  |` 
Pred ( R ,  A ,  y )
) )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) ) )
1613, 15eqeq12d 2267 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  z  ->  (
( G `  y
)  =  ( H `
 ( G  |`  Pred ( R ,  A ,  y ) ) )  <->  ( G `  z )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) ) ) )
1712, 16anbi12d 694 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  (
( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A ,  y )
) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) )  <->  ( ( F `
 z )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) )  /\  ( G `  z )  =  ( H `  ( G  |`  Pred ( R ,  A , 
z ) ) ) ) ) )
1817rcla4va 2819 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  A  /\  A. y  e.  A  ( ( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( ( F `
 z )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) )  /\  ( G `  z )  =  ( H `  ( G  |`  Pred ( R ,  A , 
z ) ) ) ) )
19 predss 23341 . . . . . . . . . . . . . . . . . . . . . . 23  |-  Pred ( R ,  A , 
z )  C_  A
20 fvreseq 5480 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  Pred ( R ,  A ,  z )  C_  A )  ->  ( ( F  |`  Pred ( R ,  A ,  z ) )  =  ( G  |`  Pred ( R ,  A ,  z ) )  <->  A. w  e.  Pred  ( R ,  A , 
z ) ( F `
 w )  =  ( G `  w
) ) )
2119, 20mpan2 655 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( ( F  |`  Pred ( R ,  A ,  z ) )  =  ( G  |`  Pred ( R ,  A ,  z ) )  <->  A. w  e.  Pred  ( R ,  A , 
z ) ( F `
 w )  =  ( G `  w
) ) )
2221biimpar 473 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  A. w  e.  Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w ) )  ->  ( F  |`  Pred ( R ,  A ,  z ) )  =  ( G  |`  Pred ( R ,  A ,  z ) ) )
2322eqcomd 2258 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  A. w  e.  Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w ) )  ->  ( G  |`  Pred ( R ,  A ,  z ) )  =  ( F  |`  Pred ( R ,  A ,  z ) ) )
2423fveq2d 5381 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  A. w  e.  Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w ) )  ->  ( H `  ( G  |`  Pred ( R ,  A , 
z ) ) )  =  ( H `  ( F  |`  Pred ( R ,  A , 
z ) ) ) )
25 eqtr3 2272 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( F `  z
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  z ) ) )  /\  ( H `
 ( G  |`  Pred ( R ,  A ,  z ) ) )  =  ( H `
 ( F  |`  Pred ( R ,  A ,  z ) ) ) )  ->  ( F `  z )  =  ( H `  ( G  |`  Pred ( R ,  A , 
z ) ) ) )
2625ancoms 441 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( H `  ( G  |`  Pred ( R ,  A ,  z )
) )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) )  /\  ( F `  z )  =  ( H `  ( F  |`  Pred ( R ,  A , 
z ) ) ) )  ->  ( F `  z )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) ) )
27 eqtr3 2272 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( F `  z
)  =  ( H `
 ( G  |`  Pred ( R ,  A ,  z ) ) )  /\  ( G `
 z )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) ) )  -> 
( F `  z
)  =  ( G `
 z ) )
2827ex 425 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F `  z )  =  ( H `  ( G  |`  Pred ( R ,  A , 
z ) ) )  ->  ( ( G `
 z )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) )  ->  ( F `  z )  =  ( G `  z ) ) )
2926, 28syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( H `  ( G  |`  Pred ( R ,  A ,  z )
) )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) )  /\  ( F `  z )  =  ( H `  ( F  |`  Pred ( R ,  A , 
z ) ) ) )  ->  ( ( G `  z )  =  ( H `  ( G  |`  Pred ( R ,  A , 
z ) ) )  ->  ( F `  z )  =  ( G `  z ) ) )
3029expimpd 589 . . . . . . . . . . . . . . . . . . 19  |-  ( ( H `  ( G  |`  Pred ( R ,  A ,  z )
) )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) )  ->  (
( ( F `  z )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) )  /\  ( G `  z )  =  ( H `  ( G  |`  Pred ( R ,  A , 
z ) ) ) )  ->  ( F `  z )  =  ( G `  z ) ) )
3124, 30syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  A. w  e.  Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w ) )  ->  ( ( ( F `  z )  =  ( H `  ( F  |`  Pred ( R ,  A , 
z ) ) )  /\  ( G `  z )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) ) )  -> 
( F `  z
)  =  ( G `
 z ) ) )
3231com12 29 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  z
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  z ) ) )  /\  ( G `
 z )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) ) )  -> 
( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. w  e.  Pred  ( R ,  A ,  z ) ( F `  w )  =  ( G `  w ) )  ->  ( F `  z )  =  ( G `  z ) ) )
3332exp3a 427 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  z
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  z ) ) )  /\  ( G `
 z )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) ) )  -> 
( ( F  Fn  A  /\  G  Fn  A
)  ->  ( A. w  e.  Pred  ( R ,  A ,  z ) ( F `  w )  =  ( G `  w )  ->  ( F `  z )  =  ( G `  z ) ) ) )
3418, 33syl 17 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  A  /\  A. y  e.  A  ( ( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( A. w  e.  Pred  ( R ,  A , 
z ) ( F `
 w )  =  ( G `  w
)  ->  ( F `  z )  =  ( G `  z ) ) ) )
3534ex 425 . . . . . . . . . . . . . 14  |-  ( z  e.  A  ->  ( A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A ,  y )
) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) )  ->  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( A. w  e. 
Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w )  -> 
( F `  z
)  =  ( G `
 z ) ) ) ) )
3635com23 74 . . . . . . . . . . . . 13  |-  ( z  e.  A  ->  (
( F  Fn  A  /\  G  Fn  A
)  ->  ( A. y  e.  A  (
( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) )  -> 
( A. w  e. 
Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w )  -> 
( F `  z
)  =  ( G `
 z ) ) ) ) )
3736imp3a 422 . . . . . . . . . . . 12  |-  ( z  e.  A  ->  (
( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( A. w  e.  Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w )  -> 
( F `  z
)  =  ( G `
 z ) ) ) )
3837a2d 25 . . . . . . . . . . 11  |-  ( z  e.  A  ->  (
( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. y  e.  A  (
( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  A. w  e.  Pred  ( R ,  A , 
z ) ( F `
 w )  =  ( G `  w
) )  ->  (
( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  z )  =  ( G `  z ) ) ) )
397, 38syl5 30 . . . . . . . . . 10  |-  ( z  e.  A  ->  ( A. w  e.  Pred  ( R ,  A , 
z ) ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  w )  =  ( G `  w ) )  ->  ( (
( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  z )  =  ( G `  z ) ) ) )
405, 39wfis2g 23381 . . . . . . . . 9  |-  ( ( R  We  A  /\  R Se  A )  ->  A. z  e.  A  ( (
( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  z )  =  ( G `  z ) ) )
41 r19.21v 2592 . . . . . . . . 9  |-  ( A. z  e.  A  (
( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  z )  =  ( G `  z ) )  <->  ( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A ,  y )
) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
4240, 41sylib 190 . . . . . . . 8  |-  ( ( R  We  A  /\  R Se  A )  ->  (
( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
4342com12 29 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( ( R  We  A  /\  R Se  A )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
441, 43sylan2br 464 . . . . . 6  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  ( A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( ( R  We  A  /\  R Se  A )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
4544an4s 802 . . . . 5  |-  ( ( ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  (
( R  We  A  /\  R Se  A )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
4645com12 29 . . . 4  |-  ( ( R  We  A  /\  R Se  A )  ->  (
( ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A ,  y )
) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
47463impib 1154 . . 3  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) )
48 eqid 2253 . . 3  |-  A  =  A
4947, 48jctil 525 . 2  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  ( A  =  A  /\  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
50 eqfnfv2 5475 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <-> 
( A  =  A  /\  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) ) )
5150ad2ant2r 730 . . 3  |-  ( ( ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  ( F  =  G  <->  ( A  =  A  /\  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) ) )
52513adant1 978 . 2  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  ( F  =  G  <->  ( A  =  A  /\  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) ) )
5349, 52mpbird 225 1  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  F  =  G )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   A.wral 2509    C_ wss 3078   Se wse 4243    We wwe 4244    |` cres 4582    Fn wfn 4587   ` cfv 4592   Predcpred 23335
This theorem is referenced by:  wfrlem5  23428  wfr3  23443
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-fv 4608  df-pred 23336
  Copyright terms: Public domain W3C validator