MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wefrc Unicode version

Theorem wefrc 4386
Description: A non-empty (possibly proper) subclass of a class well-ordered by  _E has a minimal element. Special case of Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by NM, 17-Feb-2004.)
Assertion
Ref Expression
wefrc  |-  ( (  _E  We  A  /\  B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  ( B  i^i  x )  =  (/) )
Distinct variable group:    x, B
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
Allowed substitution hint:    A( x)

Proof of Theorem wefrc
StepHypRef Expression
1 wess 4379 . . 3  |-  ( B 
C_  A  ->  (  _E  We  A  ->  _E  We  B ) )
2 n0 3465 . . . 4  |-  ( B  =/=  (/)  <->  E. y  y  e.  B )
3 ineq2 3365 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( B  i^i  x )  =  ( B  i^i  y
) )
43eqeq1d 2292 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( B  i^i  x
)  =  (/)  <->  ( B  i^i  y )  =  (/) ) )
54rspcev 2885 . . . . . . . . 9  |-  ( ( y  e.  B  /\  ( B  i^i  y
)  =  (/) )  ->  E. x  e.  B  ( B  i^i  x
)  =  (/) )
65ex 425 . . . . . . . 8  |-  ( y  e.  B  ->  (
( B  i^i  y
)  =  (/)  ->  E. x  e.  B  ( B  i^i  x )  =  (/) ) )
76adantl 454 . . . . . . 7  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( ( B  i^i  y )  =  (/)  ->  E. x  e.  B  ( B  i^i  x
)  =  (/) ) )
8 inss1 3390 . . . . . . . . . . 11  |-  ( B  i^i  y )  C_  B
9 wefr 4382 . . . . . . . . . . . . 13  |-  (  _E  We  B  ->  _E  Fr  B )
10 vex 2792 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
1110inex2 4157 . . . . . . . . . . . . . 14  |-  ( B  i^i  y )  e. 
_V
1211epfrc 4378 . . . . . . . . . . . . 13  |-  ( (  _E  Fr  B  /\  ( B  i^i  y
)  C_  B  /\  ( B  i^i  y
)  =/=  (/) )  ->  E. x  e.  ( B  i^i  y ) ( ( B  i^i  y
)  i^i  x )  =  (/) )
139, 12syl3an1 1217 . . . . . . . . . . . 12  |-  ( (  _E  We  B  /\  ( B  i^i  y
)  C_  B  /\  ( B  i^i  y
)  =/=  (/) )  ->  E. x  e.  ( B  i^i  y ) ( ( B  i^i  y
)  i^i  x )  =  (/) )
14133exp 1152 . . . . . . . . . . 11  |-  (  _E  We  B  ->  (
( B  i^i  y
)  C_  B  ->  ( ( B  i^i  y
)  =/=  (/)  ->  E. x  e.  ( B  i^i  y
) ( ( B  i^i  y )  i^i  x )  =  (/) ) ) )
158, 14mpi 18 . . . . . . . . . 10  |-  (  _E  We  B  ->  (
( B  i^i  y
)  =/=  (/)  ->  E. x  e.  ( B  i^i  y
) ( ( B  i^i  y )  i^i  x )  =  (/) ) )
16 elin 3359 . . . . . . . . . . . . 13  |-  ( x  e.  ( B  i^i  y )  <->  ( x  e.  B  /\  x  e.  y ) )
1716anbi1i 678 . . . . . . . . . . . 12  |-  ( ( x  e.  ( B  i^i  y )  /\  ( ( B  i^i  y )  i^i  x
)  =  (/) )  <->  ( (
x  e.  B  /\  x  e.  y )  /\  ( ( B  i^i  y )  i^i  x
)  =  (/) ) )
18 anass 632 . . . . . . . . . . . 12  |-  ( ( ( x  e.  B  /\  x  e.  y
)  /\  ( ( B  i^i  y )  i^i  x )  =  (/) ) 
<->  ( x  e.  B  /\  ( x  e.  y  /\  ( ( B  i^i  y )  i^i  x )  =  (/) ) ) )
1917, 18bitri 242 . . . . . . . . . . 11  |-  ( ( x  e.  ( B  i^i  y )  /\  ( ( B  i^i  y )  i^i  x
)  =  (/) )  <->  ( x  e.  B  /\  (
x  e.  y  /\  ( ( B  i^i  y )  i^i  x
)  =  (/) ) ) )
2019rexbii2 2573 . . . . . . . . . 10  |-  ( E. x  e.  ( B  i^i  y ) ( ( B  i^i  y
)  i^i  x )  =  (/)  <->  E. x  e.  B  ( x  e.  y  /\  ( ( B  i^i  y )  i^i  x
)  =  (/) ) )
2115, 20syl6ib 219 . . . . . . . . 9  |-  (  _E  We  B  ->  (
( B  i^i  y
)  =/=  (/)  ->  E. x  e.  B  ( x  e.  y  /\  (
( B  i^i  y
)  i^i  x )  =  (/) ) ) )
2221adantr 453 . . . . . . . 8  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( ( B  i^i  y )  =/=  (/)  ->  E. x  e.  B  ( x  e.  y  /\  (
( B  i^i  y
)  i^i  x )  =  (/) ) ) )
23 elin 3359 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( B  i^i  x )  <->  ( z  e.  B  /\  z  e.  x ) )
24 df-3an 938 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  e.  B  /\  z  e.  B  /\  x  e.  B )  <->  ( ( y  e.  B  /\  z  e.  B
)  /\  x  e.  B ) )
25 3anrot 941 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  e.  B  /\  z  e.  B  /\  x  e.  B )  <->  ( z  e.  B  /\  x  e.  B  /\  y  e.  B )
)
2624, 25bitr3i 244 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( y  e.  B  /\  z  e.  B
)  /\  x  e.  B )  <->  ( z  e.  B  /\  x  e.  B  /\  y  e.  B ) )
27 wetrep 4385 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (  _E  We  B  /\  ( z  e.  B  /\  x  e.  B  /\  y  e.  B
) )  ->  (
( z  e.  x  /\  x  e.  y
)  ->  z  e.  y ) )
2827exp3a 427 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (  _E  We  B  /\  ( z  e.  B  /\  x  e.  B  /\  y  e.  B
) )  ->  (
z  e.  x  -> 
( x  e.  y  ->  z  e.  y ) ) )
2926, 28sylan2b 463 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (  _E  We  B  /\  ( ( y  e.  B  /\  z  e.  B )  /\  x  e.  B ) )  -> 
( z  e.  x  ->  ( x  e.  y  ->  z  e.  y ) ) )
3029exp44 598 . . . . . . . . . . . . . . . . . . . 20  |-  (  _E  We  B  ->  (
y  e.  B  -> 
( z  e.  B  ->  ( x  e.  B  ->  ( z  e.  x  ->  ( x  e.  y  ->  z  e.  y ) ) ) ) ) )
3130imp 420 . . . . . . . . . . . . . . . . . . 19  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( z  e.  B  ->  ( x  e.  B  ->  ( z  e.  x  ->  ( x  e.  y  ->  z  e.  y ) ) ) ) )
3231com34 79 . . . . . . . . . . . . . . . . . 18  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( z  e.  B  ->  ( z  e.  x  ->  ( x  e.  B  ->  ( x  e.  y  ->  z  e.  y ) ) ) ) )
3332imp3a 422 . . . . . . . . . . . . . . . . 17  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( ( z  e.  B  /\  z  e.  x )  ->  (
x  e.  B  -> 
( x  e.  y  ->  z  e.  y ) ) ) )
3423, 33syl5bi 210 . . . . . . . . . . . . . . . 16  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( z  e.  ( B  i^i  x )  ->  ( x  e.  B  ->  ( x  e.  y  ->  z  e.  y ) ) ) )
3534imp4a 574 . . . . . . . . . . . . . . 15  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( z  e.  ( B  i^i  x )  ->  ( ( x  e.  B  /\  x  e.  y )  ->  z  e.  y ) ) )
3635com23 74 . . . . . . . . . . . . . 14  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( ( x  e.  B  /\  x  e.  y )  ->  (
z  e.  ( B  i^i  x )  -> 
z  e.  y ) ) )
3736ralrimdv 2633 . . . . . . . . . . . . 13  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( ( x  e.  B  /\  x  e.  y )  ->  A. z  e.  ( B  i^i  x
) z  e.  y ) )
38 dfss3 3171 . . . . . . . . . . . . 13  |-  ( ( B  i^i  x ) 
C_  y  <->  A. z  e.  ( B  i^i  x
) z  e.  y )
3937, 38syl6ibr 220 . . . . . . . . . . . 12  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( ( x  e.  B  /\  x  e.  y )  ->  ( B  i^i  x )  C_  y ) )
40 dfss 3168 . . . . . . . . . . . . . . . 16  |-  ( ( B  i^i  x ) 
C_  y  <->  ( B  i^i  x )  =  ( ( B  i^i  x
)  i^i  y )
)
41 in32 3382 . . . . . . . . . . . . . . . . 17  |-  ( ( B  i^i  x )  i^i  y )  =  ( ( B  i^i  y )  i^i  x
)
4241eqeq2i 2294 . . . . . . . . . . . . . . . 16  |-  ( ( B  i^i  x )  =  ( ( B  i^i  x )  i^i  y )  <->  ( B  i^i  x )  =  ( ( B  i^i  y
)  i^i  x )
)
4340, 42bitri 242 . . . . . . . . . . . . . . 15  |-  ( ( B  i^i  x ) 
C_  y  <->  ( B  i^i  x )  =  ( ( B  i^i  y
)  i^i  x )
)
4443biimpi 188 . . . . . . . . . . . . . 14  |-  ( ( B  i^i  x ) 
C_  y  ->  ( B  i^i  x )  =  ( ( B  i^i  y )  i^i  x
) )
4544eqeq1d 2292 . . . . . . . . . . . . 13  |-  ( ( B  i^i  x ) 
C_  y  ->  (
( B  i^i  x
)  =  (/)  <->  ( ( B  i^i  y )  i^i  x )  =  (/) ) )
4645biimprd 216 . . . . . . . . . . . 12  |-  ( ( B  i^i  x ) 
C_  y  ->  (
( ( B  i^i  y )  i^i  x
)  =  (/)  ->  ( B  i^i  x )  =  (/) ) )
4739, 46syl6 31 . . . . . . . . . . 11  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( ( x  e.  B  /\  x  e.  y )  ->  (
( ( B  i^i  y )  i^i  x
)  =  (/)  ->  ( B  i^i  x )  =  (/) ) ) )
4847exp3a 427 . . . . . . . . . 10  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( x  e.  B  ->  ( x  e.  y  ->  ( ( ( B  i^i  y )  i^i  x )  =  (/)  ->  ( B  i^i  x )  =  (/) ) ) ) )
4948imp4a 574 . . . . . . . . 9  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( x  e.  B  ->  ( ( x  e.  y  /\  ( ( B  i^i  y )  i^i  x )  =  (/) )  ->  ( B  i^i  x )  =  (/) ) ) )
5049reximdvai 2654 . . . . . . . 8  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( E. x  e.  B  ( x  e.  y  /\  ( ( B  i^i  y )  i^i  x )  =  (/) )  ->  E. x  e.  B  ( B  i^i  x )  =  (/) ) )
5122, 50syld 42 . . . . . . 7  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( ( B  i^i  y )  =/=  (/)  ->  E. x  e.  B  ( B  i^i  x )  =  (/) ) )
527, 51pm2.61dne 2524 . . . . . 6  |-  ( (  _E  We  B  /\  y  e.  B )  ->  E. x  e.  B  ( B  i^i  x
)  =  (/) )
5352ex 425 . . . . 5  |-  (  _E  We  B  ->  (
y  e.  B  ->  E. x  e.  B  ( B  i^i  x
)  =  (/) ) )
5453exlimdv 1665 . . . 4  |-  (  _E  We  B  ->  ( E. y  y  e.  B  ->  E. x  e.  B  ( B  i^i  x
)  =  (/) ) )
552, 54syl5bi 210 . . 3  |-  (  _E  We  B  ->  ( B  =/=  (/)  ->  E. x  e.  B  ( B  i^i  x )  =  (/) ) )
561, 55syl6com 33 . 2  |-  (  _E  We  A  ->  ( B  C_  A  ->  ( B  =/=  (/)  ->  E. x  e.  B  ( B  i^i  x )  =  (/) ) ) )
57563imp 1147 1  |-  ( (  _E  We  A  /\  B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  ( B  i^i  x )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 936   E.wex 1529    = wceq 1624    e. wcel 1685    =/= wne 2447   A.wral 2544   E.wrex 2545    i^i cin 3152    C_ wss 3153   (/)c0 3456    _E cep 4302    Fr wfr 4348    We wwe 4350
This theorem is referenced by:  tz7.5  4412  onnseq  6356  finminlem  25630
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-op 3650  df-br 4025  df-opab 4079  df-eprel 4304  df-po 4313  df-so 4314  df-fr 4351  df-we 4353
  Copyright terms: Public domain W3C validator