Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclef Unicode version

Theorem vtoclef 2794
 Description: Implicit substitution of a class for a set variable. (Contributed by NM, 18-Aug-1993.)
Hypotheses
Ref Expression
vtoclef.1
vtoclef.2
vtoclef.3
Assertion
Ref Expression
vtoclef
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem vtoclef
StepHypRef Expression
1 vtoclef.2 . . 3
21isseti 2733 . 2
3 vtoclef.1 . . 3
4 vtoclef.3 . . 3
53, 4exlimi 1781 . 2
62, 5ax-mp 10 1
 Colors of variables: wff set class Syntax hints:   wi 6  wex 1537  wnf 1539   wceq 1619   wcel 1621  cvv 2727 This theorem is referenced by:  nn0ind-raph  9991 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-gen 1536  ax-17 1628  ax-12o 1664  ax-9 1684  ax-4 1692  ax-ext 2234 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-v 2729
 Copyright terms: Public domain W3C validator