Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vprc Unicode version

Theorem vprc 4049
 Description: The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.)
Assertion
Ref Expression
vprc

Proof of Theorem vprc
StepHypRef Expression
1 nalset 4048 . . 3
2 vex 2730 . . . . . . 7
32tbt 335 . . . . . 6
43albii 1554 . . . . 5
5 dfcleq 2247 . . . . 5
64, 5bitr4i 245 . . . 4
76exbii 1580 . . 3
81, 7mtbi 291 . 2
9 isset 2731 . 2
108, 9mtbir 292 1
 Colors of variables: wff set class Syntax hints:   wn 5   wb 178  wal 1532  wex 1537   wceq 1619   wcel 1621  cvv 2727 This theorem is referenced by:  nvel  4050  vnex  4051  intex  4065  intnex  4066  snnex  4415  iprc  4850  riotav  6195  elfi2  7052  fi0  7057  ruALT  7199  cardmin2  7515  00lsp  15573  inpc  24443 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-gen 1536  ax-8 1623  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-9 1684  ax-4 1692  ax-ext 2234  ax-sep 4038 This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-v 2729
 Copyright terms: Public domain W3C validator